
Show me what you listen to!  
Auditory classification images can reveal the processing  

of fine acoustic cues during speech categorization. 

Léo Varnet1,4, Kenneth Knoblauch2,4, Fanny Meunier3,4, Michel Hoen1,4 

1Lyon Neuroscience Research Center, CNRS UMR 5292,  
Auditory Language Processing (ALP) research group, Lyon, France. 

2Stem Cell and Brain Research Institute, INSERM U 846,   
Integrative Neuroscience Department, Bron, France. 

3Laboratoire sur le Langage le Cerveau et la Cognition, CNRS UMR 5304,   
Auditory Language Processing (ALP) research group, Lyon, France. 

4Université de Lyon, Lyon 1, Lyon, France 
leo.varnet@isc.cnrs.fr, ken.knoblauch@inserm.fr, fanny.meunier@isc.cnrs.fr, 

michel.hoen@inserm.fr 
 

Abstract 
An essential step in understanding the processes underlying 
the general mechanism of perceptual categorization is to 
identify which portions of a physical stimulation modulate the 
responses of our perceptual system. More specifically, in the 
context of speech comprehension, it is still unclear what 
information is used to categorize a speech stimulus as one 
phoneme or another. Here we propose to adapt a Generalized 
Linear Model with smooth priors, already used in the visual 
domain for estimation of so-called classification images, to 
auditory experiments. We show how this promising approach 
can be applied to the identification of fine functional acoustic 
cues in speech perception.  
Index Terms: phoneme categorization, psychophysics, 
acoustic phonetics, classification images, speech, speech-in-
noise, Gaussian noise, fine acoustic cues, GLM. 

1. Introduction 
A general objective in perceptual science is to establish what 
exact parts of a complex physical stimulation modulate the 
percept it induces in an observer and constrain its behavior 
towards that stimulus. This issue has been a long-standing 
challenge in the particular context of speech comprehension 
where determining which among the auditory primitives that 
are coded at the neural acoustic/phonetic interface are actually 
used to recognize and categorize phonemes still constitutes an 
important open debate [1]. One of the current potential limits 
in this field is the lack of a method allowing direct estimation 
of which parts of the speech signal are used by listeners to 
understand speech in natural settings.  
One way often used to identify relevant acoustic cues in 
speech is to proceed by progressive signal reductions, i.e., 
eliminating certain cues in order to demonstrate which ones 
are required. In the 50’s, phoneme recognition was extensively 
studied by Liberman and colleagues for example, using the 
systematic variation of features in the time-frequency domain, 
usually along a continuum of synthetic speech [2], [3] and [4]. 
More recent work has involved artificially degraded-speech 
such as noise-vocoded [5], sine-wave [6], or band-pass filtered 
speech [7]. These approaches however, can only offer a very 
limited account of the problem as it is known that the speech 
comprehension system shows very fast and efficient plasticity, 
rapidly modifying relevant cue extraction in the face of drastic 
signal reductions or even stronger manipulations [8].  

An alternative way to proceed would be to develop a method 
allowing experimenters to directly “see” where humans listen 
inside natural speech signals, without having to modify them. 
In the present paper, we show how we think a methodological 
solution to this issue can be provided by new developments in 
the domain of so-called classification images (CIm), see [9] 
for a historical-perspective review. In 1971, A.J. Ahumada Jr. 
first developed a correlational technique to estimate the 
frequency weighting-function of observers detecting a 500-Hz 
tone-in-noise [10]. The basic idea lying behind the CIm 
approach is that if one can determine how the presence of 
background-noise at each point of a stimulus interferes with 
the decision of the observer, one can derive a map of the 
perceptual cues relevant to achieve a specific categorization 
task. CIm experiments often use a two-alternative forced 
choice (2AFC) paradigm, involving for example a pair of 
stimuli to categorize (�� and ��). Stimuli are systematically 
masked by additive noise, randomly varying at each trial. The 
best known and most intuitive method for then calculating a 
CIm is to average all noise fields eliciting response �� and 
subtract the average of the noise fields eliciting response ��; 
this method was termed reversed-correlation [11].  
Although it has been primarily conceived as an answer to a 
question that arose in the auditory modality [10], [11], this 
powerful tool has surprisingly been mostly exploited up to 
now in studies on visual psychophysics. Despite the strong 
potential of applying this method in the auditory domain, 
attempts currently remain rare and have up to now had limited 
impact (see however [12]) even though very similar 
correlational procedures have been used to determine spectral 
weighting functions of speech stimuli [13], [14], [15]. This 
situation can be partially explained by two severe limitations 
of the methods usually employed to derive CIm. Firstly, the 
several thousands of trials (up to 11400 [16]) typically needed 
to compute CIm accurately make it less adaptable to the 
auditory- than to the visual-modality. Methods minimizing this 
number do exist but they impose restrictions or simplifications 
on the noise used that are well adapted to visual stimuli, but 
not to experiments involving such complex signals as speech, 
varying in time and frequency. Secondly, the strong 
assumptions about the statistical distribution of the noise 
imposed by statistical theories limit their application to the 
study of auditory processes. Since its theoretical background 
has mostly been developed assuming additive Gaussian-noise, 
methods such as reverse-correlation are not the most suitable 
statistical framework to deal with non-Gaussian noise-fields.  
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In the present approach we propose, firstly: that the calculation 
of an auditory CIm should not be based on the amplitude of 
the noise samples, but rather on the power of the time-
frequency bins of the power-spectrum, which have non-
Gaussian distributions and secondly: to apply recent advances 
in the comprehension and computation of CIm introduced in 
recent works [17] and extended in [9], [18] and [19]. These 
studies proposed to fit the data using Generalized Linear 
Models (GLMs) with or without penalty term. Here we 
propose to implement and test this new method on the 
categorization of two VCV logatomes: ABA (/aba/) and ADA 
(/ada/).  

2. Materials and Methods 
In the following we use underlined symbols to indicate 
vectors, double underlined symbols to indicate matrices, and 
non-underlined symbols to indicate scalars. 

2.1 Experimental Procedure 

Two French native-speakers with normal hearing took part 
into this exploratory study: LV and MH. Target-sounds (�� 
and ��), were two natural-speech samples (/aba/ and /ada/), 
obtained by cross-splicing the same utterance of /a/ with an 
utterance of /ba/ or /da/ (Figure 1). Original sounds were 
recorded in a soundproof chamber by the same female speaker 
and digitized at a sample rate of 44.1 kHz. The sound samples 
were 680 ms long, and their average power was normalized. 
Each stimulus �� consisted of one target-sound (�� or ��), 
embedded in Gaussian additive-noise using equation (1). 

(1) �� = �� ∙ �	
 + ��  
In (1), i is the trial number, ki the target number (0 or 1) 
associated with this trial, �� the noise field drawn from a 
normal distribution, and �� a factor allowing the adjustment of 
signal-to-noise ratio (SNR) as a function of the participant’s 
behavior, see 2.2 below. The experiment consists in listening 
to a set of 10.000 noisy stimuli (5000 for each target) in 
random order. Participants were instructed to listen carefully 
to the stimulus and indicate by a button press whether the 
masked signal was �� or ��, response denoted by �� (0 or 1). 
Listeners could complete the task over a period of 1 week, 
during office hours, at their leisure. 

2.2 Adaptive stimulus-delivery procedure  

During the course of the experiment, the noise level was 
continuously readjusted to ensure a correct response rate 
around 75%, as in most CIm experiments [20]. The SNR was 
varied from trial to trial on the basis of a local rate of correct 
responses calculated on a 10-trials window, with an adaptation 
of 0.2, 0.4, 0.6 or 0.8 dB for differences of 5, 10, 15, or 20% 
between intended and actual scores. SNR variations of the 
SNR were limited to the range -20 dB to 0 dB. 

2.3 Deriving auditory classification images 

Each stimulus noise �� is characterized by its power 
spectrogram, whose components are entered as predictor 
variables in the model. Power spectrograms were calculated 
using a Short-Time Fourier Transform with a moving  512-pts 
Hamming window with no overlap, resulting in an 86.13 Hz 
frequency resolution and an 11.6 ms time-resolution. We 
limited our analysis to a time-range of 0 to 340 ms and a 
frequency range of 0 to 4048 Hz, ensuring that the size of the 

data-set would not exceed computational limits. The resulting 
46-by-30 matrix is reshaped into a 884-by-1 vector of time-
frequency bins, labeled 
�. A similar treatment is applied to 
both targets, resulting in vectorized power spectrograms �� 
and  �� (Fig. 1). 

 
Figure 1: Spectrograms of target-signals t0 (/aba/) and 

t1 (/ada/). Blue rectangles show the F2 transitions.  
In general agreement with the literature on CIm [21], we 
assume the observer to perform the detection of acoustic cues 
linearly by template matching, a longstanding model for 
decision-making. First, an internal decision variable �� is 
computed by convolving the input with a weighting function 
referred to as the observer’s template, and adding a random 
variable �� representing the internal noise of the system 
(accounting for the fact that the observer does not necessarily 
give the same response when presented with the same stimulus 
twice). In (2), the errors �� are assumed to have a zero mean 
symmetric distribution and to be independent from trial-to-
trial.  

(2) �� =  �
� +  �	
�
� ∗ � +  �� 

Then the response variable is given by (3): 

(3) �� = �1   �� �� > � 
0 ��ℎ������ 

� is a fixed criterion that determines the bias of the observer 
toward one alternative. 
Knoblauch and Maloney [17] reformulated this very simple 
model in terms of a Generalized Linear Model, by expressing 
the probability that the observer gave the response �� = 1, 
given the data 
�, when the target number �� was present as in 
(4) and (5): 

(4) �(�� = 1|�� = 0) =  Φ(
�� ∗ β� +  β�,�) 

(5) �(�� = 1|�� = 1) =  Φ(
�� ∗ β� +  β�,�) 

with Φ the cumulative distribution function associated with �, 
β� and β� the weighting functions corresponding to the 
presentation of target number 0 and 1 respectively, and β�,� 
and β�,� the constant terms reflecting the bias (see [9], for 
details). In line with the psychophysics literature, we could 
assume that � is taken from a logistic distribution (a common 
choice for modeling binomial data). The associated 
psychometric function Φ will then be the inverse of the logit 
function. The structure of equations (4) and (5), with a linear 
combination of parameters linked to the dependent variable 
via a psychometric function, is the typical form of a 
Generalized Linear Model ([22], [23]). At this stage we could 
thus determine the values of the model parameters  " =
�β�, β�, β�,�, β�,�# that best fit the empirical data, by simply 
maximizing the log-likelihood by a standard maximization 
algorithm as in (6): 
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(6) "$%&  =  argmax
'

 *�"� =  argmax
'

 log�∏ ����.", ��, 
��� �  

 This would provide us maximum likelihood estimates of the 
two classification images, β$� and β$�, and of the two intercept 
terms β$�,� and β/�,�.  
These estimates would presumably be too noisy to be 
decipherable. Indeed, GLMs, as reverse-correlations, when 
comprising a large number of predictors are prone to 
overfitting, which means that the model will describe the trial-
dependent noise as well as the underlying classification 
mechanism. Estimates of the observer’s template by GLM can 
therefore be quite noisy, and the model will not be able to 
generalize to novel data. One solution has been developed in 
the Generalized Linear Model framework under the name 
“Penalized Likelihood”, which has been widely used for 
estimating the receptive fields of single neurons [24], [25], 
[26] and adapted to Classification Images by Knoblauch and 
Maloney [17] see also [18] and [27]. The aim of this method is 
to incorporate prior knowledge about the smoothness of the 
intended CIm. To do so, we associate with each value of the 
model parameters " a probability (7): 

(7) ��"|8�, 89� =  8�"�*� " + 89"�*9 " 
In (7) *� is the Laplacian matrix along dimension 1 (time), *9 
the Laplacian matrix along dimension 2 (frequency) [24]. The 
quadratic form "�*� " thus provides a measure of the 
smoothness of " over dimension �, and this equation 
represents our a priori beliefs about the true underlying 
template (a smoother CIm will be more expected, and 
therefore have a higher prior probability). This prior is defined 
by a distribution and a set of hyperparameters 8 = {8�, 89}. 
Then, instead of maximizing the log-likelihood as before, we 
maximize the log of the posterior � :";�, �, 
, 8< that takes 
into account the likelihood and prior information. The 
Maximum a posteriori estimate of the model parameters is 
then given by (8):  

(8) "$%@A  =  argmax
'

Blog C� :";�, �, 
, 8<DE 
=  argmax

'
Blog C� :�;", �, 
<D + log :��".8�<E 

=  argmax
'

 F*�"� + G�"�H 
The last equation can be seen as the same maximization of the 
log-likelihood as before, with an additional penalty term, 
G�"�, that biases our estimate towards model parameters with 
higher a-priori probability. The optimal estimate is a tradeoff 
between fitting the data well and satisfying the constraints of 
the penalty term. Therefore a prior on smoothness will favor 
CIm with slow variations in time and frequency. Actually, for 
large (> 1) values of 8� and 89 we put a strong disadvantage 
on sharp CIm, and for 8� =  89 = 0 we recover the initial 
maximum likelihood solution.  
The standard method for setting the value of the 
hyperparameters is cross-validation. This approach involves a 
partition of the data between a “training” and a “test” set. For 
each given couple of hyperparameters, we can estimate the 
model parameters on the “training” set by maximum a 
posteriori, as explained previously. It becomes thus possible to 
assess how the model parameters would generalize to an 
independent dataset by comparing the predicted responses on 
the test-set to the actual responses. When the model predicts 
most accurately unseen data, the strength of priors is 

considered as accurate. Therefore, the optimal 
hyperparameters are found by choosing the models that yield a 
maximum in cross-validation rate. In more simple terms, this 
technique yields to a form of Automatic Smoothness 
Determination [28]. 

3. Results 
The SNR was manipulated across trials to maintain the 
percentage of correct answers roughly equal to 75% during the 
course of the entire experiment. Nevertheless, variations of 
SNR provide an overview of observers’ performances in the 
phoneme categorization task. Figure 2A plots the evolution of 
SNR during the experiment and the mean SNR for each 
participant. The psychometric functions are then estimated on 
all available data for each listener (figure 2B). The linear 
relationship signal contrast and detectability index in the 0 to 
15% range is in agreement with our assumption of a (at least 
locally) linear model for the observers [29].  

 
Figure 2: A. Evolution of SNR across trials (mean SNR 

by blocks of 50 trials), and mean SNR for the whole 
experiment. B. Detectability index as a function of 

signal contrast. 
Figure 3 shows the CIm obtained by the GLM method with 
smooth priors, as well as the values of 8� and 89. For each 
participants, two CIm β$� and β$� are computed, based on the 
trials where the target signals �� or �� were presented, 
providing a measure of the strength of the relation between the 
noise at different time-frequency locations and the speech 
identification scores in the case where the masked signal was 
�� or �� respectively. In that sense, the templates may be 
regarded as a measure of the contribution of each time-
frequency bins to categorization, with high absolute values for 
locations at which the power of the noise influences the 
decision of the observer. As can be seen from Figure 3, CIm 
often exhibit both positive (yellow) and negative (black) 
weights corresponding to areas where the presence of noise 
respectively increases or decreases the probability of the 
stimulus to be identified as signal ��.The differences between 
the two estimates are generally interpreted as evidence of the 
nonlinearities of the auditory system (the template used for 
detection depending on the input signal).   
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Figure 3: Classification Images β0 and β1 for both 

participants. Blue rectangles show the regions 
surrounding the F2 transitions in the original signals. 
The color scale represents the weights divided by their 

maximum absolute value. 
For a better understanding of these CIm, we ran a similar test 
performed by an ideal template matcher. This classifier 
simulates the optimal observer with the linear model presented 
in equation (2) and (3) by taking � =  �� − ��. Therefore the 
template matcher observer bases its classification strategy on 
the time-frequency bins where the spectrograms of the two 
signals differ most. As the performances of the algorithm do 
not vary over time, the SNR for stimulus presentation was set 
to -25 dB, for a resulting percentage of correct answers of 
68%. The obtained CIm are plotted in Figure 4. We can notice 
that, unlike in Figure 3, β$� and β$� are very close because the 
linear observer algorithm involves a single template. 

 
Figure 4: Classification Images β0 and β1 for the 

template-matcher. 

4. Discussion 
We have shown that the use of a GLM with a smoothness 
prior as a statistical method for the estimation of CIm in the 
auditory modality is a reasonable way of overcoming 
traditional limitations of this approach to auditory studies. 
First, this method allows the addition of prior knowledge on 
the smoothness of the expected CIm. By exploiting the 
dependencies between adjacent noise values, one can 
significantly reduce the number of trials required to obtain a 
reliable CIm. Secondly, unlike the reverse-correlation method, 
the GLM does not require the stimulus or the noise to be 

normally distributed. Accordingly, it can measure CIm using 
noise-fields with non-Gaussian distributions, such as the 
power spectrum of an acoustic-noise, in a similar way to the 
calculations of second-order CIm using GLM in [17, 24]. 
Therefore, Generalized Linear Models with priors provide a 
suitable and powerful framework to investigate the way in 
which the human system achieves fast and efficient 
categorization of phonemes in noise and to estimate how 
human observers differ from ideal template matchers.  
We could further demonstrate that this method would be 
suitable for studying the use of fine-acoustic cues used during 
speech categorization. If we map the CIm obtained from both 
of our human listeners onto the original stimuli spectrograms, 
we can observe two main foci of high- and low-values 
weights, located in the time-frequency domain exactly over the 
second formant F2 (blue squares in figure 3). More precisely, 
our preliminary observations suggest that, unlike the template-
matcher, the functional cue used for categorizing /aba/ and 
/ada/ stimuli is composed of the end of the second formant at 
the end of the vowel and of the onset of F2, on the consonant, 
just following the occlusion. This is in agreement with the 
strong hypothesis, formulated in [3], that the second formant 
transition would be a key for classifying phonemes into [ABA] 
or [ADA]. The pattern consistently observed at each time-
frequency location of a second formantic transition, composed 
of a cluster of positive weight below a cluster of negative 
weights, supports the assumption that frequency information is 
coded in terms of relative difference across channels [6]. A 
similar pattern has been observed for a Vernier acuity task in 
the visual domain [11], highlighting the fact that our phoneme 
categorization task can be seen as the detection of the 
alignment of formants. In addition, the obtained CIm evidence 
the fact that the estimation of the second formant by the 
auditory system is a relative measurement, since the presence 
of noise masking the position of F2 in the preceding vowel 
influences the decision of the observer (even though this 
region contains no useful information for performing the task 
as the first syllable was obtained by cross-splicing the same 
utterance of /a/). This could be in line with theories 
conceptualizing phonemic perception as the interpretation of 
phonetic movements and trajectories, and indicates that the 
categorization mechanism involved in our experiment is not 
task-specific. Further work will be dedicated to studying in 
detail the relationship between CIm and phonetic 
discriminations. 

5. Conclusions 
In this study we have demonstrated the feasibility of studying 
the use of fine-acoustic cues relevant for phoneme 
categorization using auditory classification images (ACI). We 
have shown that applying new statistical developments, 
including GLM models with priors, to the methodology of 
classification images dramatically extends the possibility of 
using CIm in the auditory modality by increasing the power of 
the method and avoiding traditional limitations such as the 
high number of needed trials or assumptions on the Gaussian 
distribution of the noise used to mask target-stimuli. 
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