Introduction	ACIs and acoustic cues	Blob noise	Listening strategies	Conclusions
000000		0000	0000000	00

New methodologies for studying listening strategies in phoneme categorization tasks

Léo Varnet

École Normale Supérieure Paris

Speech Science Forum, 18/10/2018

<□ > < □ > < □ > < Ξ > < Ξ > < Ξ > ○ Q @ 1/36

Introduction	ACIs and acoustic cues	Blob noise	Listening strategies	Conclusions
000000		0000	0000000	00
Plan				

Introduction

- Decoding speech
- Visual Classification Images (CI)
- 2 ACIs and acoustic cues
 - Aba/Ada experiment (Varnet et al., 2013)
 - Alda/Alga/Arda/Arga experiment (Varnet et al., 2015)

3 Blob noise

Blob noise ACI (Varnet et al., in prep.)

4 Listening strategies

- Long- vs. short-term adaptations (Varnet et al. 2015, 2016a, 2016b)
- Cue-weighting strategies (Varnet et al., in prep.)

Conclusions

Introduction •00000	ACIs and acoustic cues	Blob noise 0000	Listening strategies	Conclusions 00
Decoding speech				
Decoding s	speech			

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q (C 3/36

Introduction •00000	ACIs and acoustic cues	Blob noise 0000	Listening strategies	Conclusions 00
Decoding speech				
Decoding	speech			

Introduction •00000	ACIs and acoustic cues	Blob noise 0000	Listening strategies 0000000	Conclusions 00
Decoding speech				
Decoding	speech			

< □ ▶ < □ ▶ < 亘 ▶ < 亘 ▶ < 亘 ▶ ○ Q ○ 3/36

Introduction •00000	ACIs and acoustic cues	Blob noise 0000	Listening strategies	Conclusions 00
Decoding speech				
Decoding	speech			

< □ ▶ < □ ▶ < 亘 ▶ < 亘 ▶ < 亘 ▶ ○ Q ○ 3/36

Introduction ○●○○○○	ACIs and acoustic cues	Blob noise 0000	Listening strategies 00000000	Conclusions 00
Decoding speech				
Decoding s	peech			

• Speech is a **complex code** (acoustics → phonetics).

) Q (~ 4/36

Introduction 0●0000	ACIs and acoustic cues	Blob noise 0000	Listening strategies 00000000	Conclusions 00
Decoding speech				
Decoding s	peech			

- Speech is a **complex code** (acoustics \rightarrow phonetics).
- Cracking the speech code: finding the auditory primitives of speech comprehension.

Introduction 00000	ACIs and acoustic cues	Blob noise 0000	Listening strategies	Conclusions 00
Decoding speech				
Decoding	speech			

- Speech is a **complex code** (acoustics \rightarrow phonetics).
- Cracking the speech code: finding the auditory primitives of speech comprehension.

Which **acoustic cues** allow the listener to differentiate one phoneme from another?

Introduction 00000	ACIs and acoustic cues	Blob noise 0000	Listening strategies 0000000	Conclusions 00
Decoding speech				
Decoding	speech			

- Speech is a **complex code** (acoustics \rightarrow phonetics).
- Cracking the speech code: finding the auditory primitives of speech comprehension.

Which **acoustic cues** allow the listener to differentiate one phoneme from another?

No easy answer, due to the spectrotemporal complexity of natural speech.

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies 0000000	Conclusions 00
Decoding speech				
Decoding s	speech			

How do we distinguish /ba/ from /da/?

• Many acoustical differences

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies 0000000	Conclusions 00
Decoding speech				
Decoding s	speech			

How do we distinguish /ba/ from /da/?

Many acoustical differences (e.g. formant trajectories)

/aba/

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies 0000000	Conclusions 00
Decoding speech				
Decoding s	peech			

How do we distinguish /ba/ from /da/?

- Many acoustical differences (e.g. formant trajectories)
- Which ones are actually used by the auditory system ?

/aba/

Introduction 000●00	ACIs and acoustic cues	Blob noise 0000	Listening strategies	Conclusions 00
Decoding speech				
Decoding	speech			

• Low-/high-pass filtered speech (*Fletcher*, 1922)

Introduction 000●00	ACIs and acoustic cues	Blob noise 0000	Listening strategies 0000000	Conclusions 00
Decoding speech				
Decoding	speech			

- Low-/high-pass filtered speech (Fletcher, 1922)
- Synthetic speech continuum (Haskins in the 50's)

 \rightarrow Proof that the **F2 onset** is a cue for categorizing /b/-/d/-/g/?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies 0000000	Conclusions 00
Decoding speech				
Decoding	speech			

- Low-/high-pass filtered speech (Fletcher, 1922)
- Synthetic speech continuum (Haskins in the 50's)
- 3-Dimensional Deep Search (Li & Allen, 2012), etc...

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies	Conclusions 00
Decoding speech				
Decoding	speech			

- Low-/high-pass filtered speech (Fletcher, 1922)
- Synthetic speech continuum (Haskins in the 50's)
- 3-Dimensional Deep Search (Li & Allen, 2012), etc...

Problem: the speech comprehension system shows very efficient **strategy adaptation**.

Introduction	ACIs and acoustic cues	Blob noise	Listening strategies	Conclusions
000000	0000000000000	0000	0000000	00
Decoding speech				

The need for an 'ear-tracker'

Developing a new method to visualize 'where' humans listen inside **natural** speech signals.

► (=)

A B > 4
 B > 4
 B

Introduction	ACIs and acoustic cues	Blob noise	Listening strategies	Conclusions
000000		0000	0000000	00
Decoding speech				

The need for an 'ear-tracker'

Developing a new method to visualize 'where' humans listen inside **natural** speech signals.

A solution could be provided by the technique of Classification Images (CI).

Introduction ○○○○○●	ACIs and acoustic cues	Blob noise 0000	Listening strategies	Conclusions 00
Visual Classification	Images (CI)			
Visual Cl	assification Imag	ges (CI)		

Correlational technique (*Ahumada, 1971*) primarily used for applications in visual psychophysics. Example: visual detection of a Gabor target in noise.

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 8/36

(Solomon, 2002)

Introduction	ACIs and acoustic cues	Blob noise	Listening strategies	Conclusions
00000	000000000000	0000	0000000	00
Visual Classification Imag	ges (CI)			
		()		

Visual Classification Images (CI)

Correlational technique (*Ahumada, 1971*) primarily used for applications in visual psychophysics. Example: visual detection of a Gabor target in noise.

Which information is used to detect whether the target was present or not?

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 8/36

(Solomon, 2002)

Introduction	ACIs and acoustic cues	Blob noise 0000	Listening strategies	Conclusions 00		
Visual Classification Images (CI)						
Visual Clas	sification Images	(CI)				

Correlation between the specific noise field in each trial and the response of the observer. The resulting correlation matrix shows how the presence of noise at each point interferes with the decision.

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 8/36

Introduction	ACIs and acoustic cues	Blob noise 0000	Listening strategies 00000000	Conclusions 00		
Visual Classification Images (CI)						
Visual Class	sification Images	(CI)				

Correlation between the specific noise field in each trial and the response of the observer. The resulting correlation matrix shows how the presence of noise at each point interferes with the decision.

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 8/36

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies	Conclusions 00
Aba/Ada experiment (Varnet et al., 2013)				
Aba/Ada experiment				

Applying CI approach to the auditory modality

 \rightarrow Auditory Classification Images (ACls)

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies 0000000	Conclusions 00		
Aba/Ada experiment (Varnet et al., 2013)						
Materials						

Targets: 2 speech sounds ($t_0=/aba/and t_1=/ada/$) obtained by concatenating the same utterance of /a/ with two single utterances of /ba/and /da/ (equalized in duration and rms).

Stimuli: Target sounds in an additive Gaussian noise.
Task: Indicate whether the target was /aba/ or /ada/.
SNR adapted continuously to ensure a correct response rate of 75%.

Two major differences:

- Analysis based on time-frequency representations.
- Complexity of the speech targets.

Generalized Linear Model (GLM):

- Works with arbitrary stimuli.
- Can be regularized to alleviate the overfitting problem.

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies 00000000	Conclusions 00		
Aba/Ada experiment (Varnet et al., 2013)						
ldeal temp	late					

What would be the template used by an ideal observer performing the task linearly by template-matching?

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQで 13/36

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies	Conclusions 00		
Aba/Ada experiment (Varnet et al., 2013)						
Real parti	cipant					

• ACI does not look like the optimal template.

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies 0000000	Conclusions 00		
Aba/Ada experiment (Varnet et al., 2013)						
Real partic	cipant					

- ACI does not look like the optimal template.
- Clusters of positive and negative weights corresponding to the acoustic cues (preceded with the opposite pattern of weights).

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies	Conclusions 00		
Aba/Ada experiment (Varnet et al., 2013)						
Real partie	cipant					

 Confirms that the F2 onset is a cue for classifying phonemes into /b/ or /d/ (Liberman et al., 1954).

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies	Conclusions 00		
Aba/Ada experiment (Varnet et al., 2013)						
Real partic	cipant					

- Confirms that **the F2 onset is a cue** for classifying phonemes into /b/ or /d/ (*Liberman et al., 1954*).
- Two unexpected cues.
- Coarticulation cue on the (uninformative) first syllable.

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies 0000000	Conclusions 00		
Aba/Ada experiment (Varnet et al., 2013)						
Aba/Ada	experiment					

• The method works fine!

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies 0000000	Conclusions 00		
Aba/Ada experiment (Varnet et al., 2013)						
Aba/Ada	experiment					

- The method works fine!
- Visualize what cues people listen to in natural speech signals (in noise)

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies 0000000	Conclusions 00		
Aba/Ada experiment (Varnet et al., 2013)						
Aba/Ada	experiment					

- The method works fine!
- Visualize what cues people listen to in natural speech signals (in noise)
- Can even reveal cues that are not present in the targets!

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies 0000000	Conclusions 00		
Aba/Ada experiment (Varnet et al., 2013)						
Aba/Ada	experiment					

- The method works fine!
- Visualize what cues people listen to in natural speech signals (in noise)
- Can even reveal cues that are not present in the targets!

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• ... group-level ACIs?
Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies	Conclusions 00	
Alda/Alga/Arda/Arga experiment (Varnet et al., 2015)					
Alda/Alga/	/Arda/Arga expe	riment			

- **Participants**: **16** native French speakers. Each participant completed a set of 10.000 trials (20 sessions of 500 trials over 4 days).
- Targets: 4 CVVC sequences (/alda/-/alga/-/aʁda/-/aʁga/). Natural speech productions equated in duration and rms.
- Task: Indicate whether the last syllable was /da/ or /ga/.
- **Stimuli**: Targets in Gaussian noise. SNR was adapted continuously to ensure 79% correct response rate.

Introduction 000000	ACIs and acoustic cues	Blob noise	Listening strategies	Conclusions 00	
Alda/Alga/Arga experiment (Varnet et al., 2015)					
Methods					

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ の Q @ 18/36

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies 0000000	Conclusions 00	
Alda/Alga/Arda/Arga experiment (Varnet et al., 2015)					
Group AC	1				

• Similar pattern of weights for all 16 participants.

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies 0000000	Conclusions 00	
Alda/Alga/Arda/Arga experiment (Varnet et al., 2015)					
Group A	CI				

- Similar pattern of weights for all 16 participants.
- Primary cue: negative cluster surrounded by positive cluster.
- Other cues at lower frequencies.

Mean ACI over 16 participants

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies 0000000	Conclusions 00	
Alda/Alga/Arda/Arga experiment (Varnet et al., 2015)					
Group A	CI				

- Similar pattern of weights for all 16 participants.
- Primary cue: negative cluster surrounded by positive cluster.
- Other cues at lower frequencies.

Mean ACI over 16 participants t-test against 0 with FDR correction (FDR< .001)

Introduction 000000	ACIs and acoustic cues	Blob noise	Listening strategies	Conclusions 00	
Alda/Alga/Arda/Arga experiment (Varnet et al., 2015)					
Group A	CI				

- The F2 and F3 onsets are critical cues for this task.
- The onset of F1 is also a cue for categorization.

Mean ACI over 16 participants t-test against 0 with FDR correction (FDR< .001)

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies 0000000	Conclusions 00	
Alda/Alga/Arda/Arga experiment (Varnet et al., 2015)					
Cross-va	lidation				

The ACI is a statistical model \rightarrow cross-validate!

Within-participants *k*-fold cross-validation: CV rate \approx 70%.

Between-participants *k*-fold cross-validation: CV rate $\approx 65\%$.

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies 0000000	Conclusions 00	
Alda/Alga/Arda/Arga experiment (Varnet et al., 2015)					
Cross-va	lidation				

The ACI is a statistical model \rightarrow cross-validate!

Within-participants *k*-fold cross-validation: CV rate \approx 70%.

Between-participants *k*-fold cross-validation: CV rate $\approx 65\%$.

Evidence that normal-hearing individuals are using the same **listening strategy** for categorizing speech.

Introduction 000000	ACIs and acoustic cues	Blob noise ●000	Listening strategies	Conclusions 00	
Blob noise ACI (Varnet et al., in prep.)					
Blob noise					

The clusters of weights on the ACI are regions where the presence of noise biases categorization toward /d/ or /g/.

 \rightarrow What happens if we superimpose an additional bump of noise on the location of a cue previously identified?

23/36

Introduction 000000	ACIs and acoustic cues	Blob noise ⊙●⊙⊙	Listening strategies	Conclusions 00
Blob noise ACI (Varnet et al., in prep.)				
Blob noise				

Blob noise: white noise with an additional bump of noise on the location of a cue previously identified.

Introduction 000000	ACIs and acoustic cues	Blob noise ⊙●⊙⊙	Listening strategies	Conclusions 00
Blob noise ACI (Varnet et al., in prep.)				
Blob noise				

Blob noise: white noise with an additional bump of noise on the location of a cue previously identified.

 \rightarrow a noise that shifts perception from da to ga (or from ga to da)!

Introduction 000000	ACIs and acoustic cues	Blob noise ⊙●⊙⊙	Listening strategies 00000000	Conclusions 00
Blob noise ACI (Varnet et al., in prep.)				
Blob noise				

Blob noise: white noise with an additional bump of noise on the location of a cue previously identified.

 \rightarrow a noise that shifts perception from da to ga (or from ga to da)!

First application: 'blob noise ACI'.

Painful experiment (10.000 trials \approx **4h** of da/ga in noise)

Blob noise ACI: ACI calculated using random blob noises. \rightarrow reduces the number of trials required to \approx 1000!

Introduction 000000	ACIs and acoustic cues	Blob noise 000●	Listening strategies 00000000	Conclusions	
Blob noise ACI (Varnet et al., in prep.)					
Interim summary					

The acoustic-to-phonetic conversion is a complex process

- involving multiple cues
- some of which may be **anticipatory**
- cues are associated with different weights in the decision (e.g. primary F2/F3 cue vs. secondary F1 cue)

26/36

Introduction 000000	ACIs and acoustic cues	Blob noise 000●	Listening strategies 00000000	Conclusions	
Blob noise ACI (Varnet et al., in prep.)					
Interim summary					

The acoustic-to-phonetic conversion is a complex process

- involving multiple cues
- some of which may be **anticipatory**
- cues are associated with different weights in the decision (e.g. primary F2/F3 cue vs. secondary F1 cue)

• The ACI gives an insight into the black box.

How consistent are those strategies across listeners / groups / listening conditions?

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies ●0000000	Conclusions 00		
Long- vs. short-term adaptations (Varnet et al. 2015, 2016a, 2016b)						
Comparing groups of listeners						

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Musicians are better than non-musicians at understanding speech in noise.
- Dyslexics have impaired speech in noise comprehension.
- \rightarrow Do they use different cues?

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies ●○○○○○○○	Conclusions 00		
Long- vs. short-term adaptations (Varnet et al. 2015, 2016a, 2016b)						
Comparing groups of listeners						

- Musicians are better than non-musicians at understanding speech in noise.
- Dyslexics have impaired speech in noise comprehension.
- \rightarrow Do they use different cues?

000000	0000000000000	0000	0000000	00
Long- vs. short-term ad	aptations (Varnet et al. 2015, 2016a	, 2016Ь)		
Comparing	listening conditi	ons		
Replicating t	he /ba/-/da/ and		Natural speech stimuli	Noise-vocoded stimuli
/da/-/ga/ e> speech stimu	periments with reduction of the second se I:	ed	ACI for participation of the second s	o -2 "da"

Blob noise

Listening strategies

• Noise-vocoded stimuli

ACIs and acoustic cues

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strateg	gies Conclusi	ions
Long- vs. short-term ada	aptations (Varnet et al. 2015, 2016a	, 2016b)			
Comparing	listening condition	ons			
Replicating th /da/-/ga/ ex speech stimul	ne /ba/-/da/ and periments with reduc li:	ed ACI for participant LV	Natural speech stimuli aba 100 100 100 100 100 100 100 10	Noise-vocoded stimuli add a dat a dat bar bar control of the stimuli add a dat bar control of the stimuli add a dat bar control of the stimuli add a dat a dat control of the stimuli add a dat a dat a dat control of the stimuli add a dat a dat a dat a dat control of the stimuli add a dat a dat a dat a dat a data control of the stimuli add a dat a dat a data control of the stimuli add add add add add add add add add add	2
Noise-vo	coded stimuli		Natural speech stimuli	Re-synthesized stimuli	

• Re-synthesized stimuli

Introduction 000000	ACIs and acoustic cues	Blob noise 0000		Listening strate ○●○○○○○○	gies	Conclusions 00
Long- vs. short-term ada	ptations (Varnet et al. 2015, 2016a	, 2016b)				
Comparing	listening condition	ons				
			Na aba ≥ ₇₈₈₁	tural speech stimuli	Noise-vocoded	stimuli
Replicating th /da/-/ga/ ex speech stimul	ne /ba/-/da/ and periments with reduc i:	ed	ACI for participant	0 time (s) 0.35		2 0 -2 "da"
 Noise-vo 	coded stimuli		Nat	ural speech stimuli	Re-synthesized	stimuli
 Re-synth 	esized stimuli		ald	alga	alda alg	a

 \rightarrow How does the auditory system adapt to speech reductions?

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies	Conclusions 00
Cue-weighting strategies (Varnet et al., in prep.)				
Cue-weighting variability				

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ 29/36

• Between groups: cue-weighting differences, while the overall strategy remains the same.

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies	Conclusions 00
Cue-weighting strate	egies (Varnet et al., in prep.)			
Cue-weig	hting variability			

- **Between groups**: cue-weighting differences, while the overall strategy remains the same.
- Within groups: all participants appear to use the same cues... But do they have the same weighting strategy?

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies	Conclusions 00
Cue-weighting strategie	s (Varnet et al., in prep.)			
Cue-weight	ting variability			

- **Between groups**: cue-weighting differences, while the overall strategy remains the same.
- Within groups: all participants appear to use the same cues... But do they have the same weighting strategy?

イロト 不得 トイヨトイヨト

ъ

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies	Conclusions 00	
Cue-weighting strategies (Varnet et al., in prep.)					
Parametric blob noise paradigm					

<ロト<通ト<呈ト<呈ト 見、のへで 30/36

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies	Conclusions 00	
Cue-weighting strategies (Varnet et al., in prep.)					
Parametric	blob noise para	adigm			

By varying the energy of the blobs and measuring the proportion of confusions, we should be able to estimate the **sensitivity** of a listener to the corresponding cue.

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies	Conclusions 00		
Cue-weighting strategies (Varnet et al., in prep.)						
Parametric	blob noise para	adigm				

Joint measurement of the weightings of **two separate cues**.

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies	Conclusions 00
Cue-weighting strateg	gies (Varnet et al., in prep.)			
D .				

Parametric blob noise paradigm

1000 trials per participant (4 target X 25 blob noises X 10 repetitions). β_1 and β_2 : participant's weights on cue 1 and cue 2. \rightarrow Strong effect of primary cue; weak effect of secondary cue.

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies ○○○○○○●○	Conclusions 00	
Cue-weighting strategies (Varnet et al., in prep.)					
Cue-weight	ing strategies				

17 **Normal-hearing** (NH) participants

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の < で 33/36

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies	Conclusions 00
Cue-weighting strates	gies (Varnet et al., in prep.)			
~ · ·				

Cue-weighting strategies

- 17 **Normal-hearing** (NH) participants
- 18 Hearing-impaired (HI) participants with high-frequency loss
- 15 Hearing-impaired (HI) participants with flat loss

Audibility restored with simulated hearing aid.

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies ○○○○○○●	Conclusions 00
Cue-weighting strate	egies (Varnet et al., in prep.)			
<u> </u>				

Cue-weighting strategies

3 groups:

- NH
- HI (HF loss)
- HI (flat loss)

Audibility restored with simulated hearing aid.

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies ○○○○○○●	Conclusions 00
Cue-weighting strategies (Varnet et al., in prep.)				
Cue-weight	ing strategies			

3 groups:

- NH
- HI (HF loss)
- HI (flat loss)

Audibility restored with simulated hearing aid.

log sensitivity ratio $log(\beta_1/\beta_2)$: relative importance of cue 1 and cue 2 in the decision.

<ロト<

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies ○○○○○○●	Conclusions 00
Cue-weighting strategies (Varnet et al., in prep.)				
Cue-weight	ing strategies			

3 groups:

- NH
- HI (HF loss)
- HI (flat loss)

Audibility restored with simulated hearing aid.

log sensitivity ratio $log(\beta_1/\beta_2)$: relative importance of cue 1 and cue 2 in the decision.

HI (HF loss) participants have a different cue-weighting strategy, even though their hearing loss was corrected through amplification.

Introduction	ACIs and acoustic cues	Blob noise	Listening strategies	Conclusions
000000	000000000000	0000	0000000	• 0

Conclusion: using noise to characterize a black box

• Wiener kernel analysis (*Wiener, 1958*): characterizing an **electrical circuit** by giving it a white noise input and measuring correlations between its input and output.

Conclusion: using noise to characterize a black box

- Wiener kernel analysis (Wiener, 1958)
- Auditory Classification Images: characterizing the **auditory system** by giving it a noisy input and measuring correlations between its input and output.

Introduction 000000	ACIs and acoustic cues	Blob noise 0000	Listening strategies	Conclusions 0

Thanks for your attention! And thanks to:

Christian Lorenzi, Christophe Micheyl, Chloé Langlet

Michel Hoen, Kenneth Knoblauch, Gwendoline Trollé, Chloé Peter, Fanny Meunier