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ABSTRACT:
Natural soundscapes correspond to the acoustical patterns produced by biological and geophysical sound sources at

different spatial and temporal scales for a given habitat. This pilot study aims to characterize the temporal-

modulation information available to humans when perceiving variations in soundscapes within and across natural

habitats. This is addressed by processing soundscapes from a previous study [Krause, Gage, and Joo. (2011).

Landscape Ecol. 26, 1247] via models of human auditory processing extracting modulation at the output of cochlear

filters. The soundscapes represent combinations of elevation, animal, and vegetation diversity in four habitats of the

biosphere reserve in the Sequoia National Park (Sierra Nevada, USA). Bayesian statistical analysis and support

vector machine classifiers indicate that: (i) amplitude-modulation (AM) and frequency-modulation (FM) spectra dis-

tinguish the soundscapes associated with each habitat; and (ii) for each habitat, diurnal and seasonal variations are

associated with salient changes in AM and FM cues at rates between about 1 and 100 Hz in the low (<0.5 kHz) and

high (>1–3 kHz) audio-frequency range. Support vector machine classifications further indicate that soundscape var-

iations can be classified accurately based on these perceptually inspired representations.
VC 2020 Acoustical Society of America. https://doi.org/10.1121/10.0001174
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I. INTRODUCTION

For more than half a century, substantial effort has been

invested to understand how the human auditory system pro-

cesses conspecific communication signals, namely speech

sounds. A very productive line of research put the emphasis

on the temporal aspects of the speech structure and explored

speech perception in terms of temporal-modulation process-

ing (e.g., Houtgast and Steeneken, 1973; Plomp, 1983;

Rosen, 1992; Drullman, 1995; Shannon et al., 1995; Zeng

et al., 2005; Moore, 2008; Shamma and Lorenzi, 2013).

Altogether, these studies demonstrated that (i) speech

sounds convey salient modulations in amplitude (AM) and

frequency (FM) resulting from the dynamic modulation of

the vocal-tract geometric characteristics and vocal-fold

vibrations (e.g., Varnet et al., 2017); (ii) the human auditory

system is exquisitely sensitive to these modulation cues and

certainly optimized to detect and discriminate modulation

cues at the output of perceptual filters selectively tuned in

the AM domain (Rodriguez et al., 2010; Koumura et al.,
2019) and, in the case of slow FM carried by low-frequency

sounds, due to temporal coding mechanisms using neural

phase-locking to the temporal fine structure of narrowband

signals at the output of cochlear filters (Paraouty et al.,
2018); and (iii) the ability to identify speech in a variety of

listening conditions is constrained by the ability to perceive

accurately these relatively slow AM and FM components

(e.g., Fu, 2002; Johannesen et al., 2016; Parthasarathy et al.,
2020).

Much less well understood is another essential—and

maybe evolutionarily more ancient—function of human

hearing: the processing of information from natural sound-
scapes. Indeed, “the sounds characteristic of any environ-

ment (soundscape) combine to make up a sort of scene that

helps to establish our sense of place and our orientation to it
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(LIS), Marseille, France. Electronic mail: etiennethoret@gmail.com,

ORCID: 0000-0002-8214-6278.
b)Also at: International Center for Interdisciplinary Global Environmental

Studies (iGLOBES), UMI 3157 CNRS, �Ecole normale sup�erieure,

Universit�e Paris Sciences et Lettres, University of Arizona, Tucson, AZ

85721, USA.

3260 J. Acoust. Soc. Am. 147 (5), May 2020 VC 2020 Acoustical Society of America0001-4966/2020/147(5)/3260/15/$30.00

ARTICLE...................................

https://doi.org/10.1121/10.0001174
http://crossmark.crossref.org/dialog/?doi=10.1121/10.0001174&domain=pdf&date_stamp=2020-05-06
mailto:etiennethoret@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1121/10.0001174&domain=pdf&date_stamp=2020-05-06


(…): they let us know where we are and about most of the

events occurring nearby.” “These sorts of environmental

sounds (…) contain information that all organisms can

potentially use to form a sort of image of the environment”

(Fay, 2009).

Following the pioneering works of Truax and Schafer

(see Schafer, 1977; Truax, 1999), a wealth of studies in the

scientific fields called “soundscape ecology” and “ecological

acoustics” have been conducted for about two decades to

explore the acoustic information conveyed by soundscapes

(for reviews, see Pijanowski et al., 2011; Sueur and Farina,

2015; Krause, 2016; Gasc et al., 2016; Farina and Gage,

2017; Gage and Farina, 2017). An ambitious research agenda

progressively emerged, aiming at identifying acoustic cues

and developing efficient algorithms that automatically clas-

sify acoustic patterns emanating from landscapes (that is,

soundscapes) and understanding how such soundscapes vary

with landscape patterns and processes, biodiversity, and vari-

ous physical factors, such as temperature (air, soil, and

water), solar radiation, relative humidity, heating degree

days, etc. (Sueur and Farina, 2015). Here, the term

“soundscape” describes the relationship between a landscape

and the composition of its sound. More precisely, a sound-

scape corresponds to “all sounds, those of biophony, geo-

phony, anthropophony, emanating from a given landscape to

create unique acoustical patterns across a variety of spatial

and temporal scales” (Krause, 1987); biophony is defined as

the “combined sound that living organisms produce in a given

habitat,” geophony is defined as “all geophysical sounds in

the environment” (e.g., sounds of wind, thunder, water flow,

earth movement, etc.), and anthropophony is defined as “the

sounds produced by human-generated mechanical sounds”

(Krause et al., 2011).

Consistent with the line of research that explored

speech perception in terms of temporal-modulation process-

ing, several studies showed that modulation information

may play a crucial role in the identification of non-speech

sounds, such as communication signals produced by animals

or environmental sounds. In a signal-processing study,

Singh and Theunissen (2003) showed that the modulation

spectra of animal vocalizations (i.e., zebra finch songs,

Bengalese finch song, bat calls) are quite different from

those of environmental sounds produced by geophysical

sound sources (e.g., rain, fire, and forest and stream sounds).

Psychoacoustical studies using AM-vocoders, i.e., signal-

processing schemes discarding FM cues selectively while

preserving AM cues in a series of audio-frequency bands,

showed that the capacity of human listeners to identify envi-

ronmental sounds also relies on the auditory perception of

specific AM and FM cues (Gygi et al., 2004; Shafiro, 2008).

This hypothesis was validated further by demonstrating that

time-averaged statistics extracted from temporal-envelope

fluctuations at the output of cochlear filters and/or AM filters

are used by human listeners to discriminate “auditory

textures,” i.e., signatures of the surrounding environment as

produced by geophysical or biological sounds (such as rain,

ocean waves, swarms of insects), resulting from the

superposition of many similar events (McDermott and

Simoncelli, 2011; McWalter and Dau, 2017; McWalter and

McDermott, 2018). Altogether, these findings suggest that

the human auditory system exploits temporal-modulation

cues when perceiving natural soundscapes and their

changes, and such cues may be used to evaluate the biologi-

cal and geophysical characteristics of a given habitat (or

biotope) and biome (the biological communities of vegeta-

tion and animals formed in response to a shared physical cli-

mate; each biome comprises a variety of habitats).

The present research aimed to test this assumption and,

more precisely, to assess to which extent humans may rely

on AM and FM cues when perceiving the variations of natu-

ral soundscapes across habitats, seasons, and time. The con-

tribution of anthropophony was not considered in this study.

This issue was addressed by processing natural soundscapes

recorded in distinct habitats of the same biome (a temperate

coniferous forest) over four periods of the day (dawn, mid-

day, dusk, nighttime) and the four seasons (fall, spring, sum-

mer, winter) via computational models of human auditory

processing extracting and representing modulation informa-

tion at the output of a cochlear filterbank (Varnet et al.,
2017).

The analyses were designed to examine the diurnal

and seasonal variations of AM and FM cues in each audio-

frequency region for four pristine habitats of the biosphere

reserve in the Sequoia National Park (Sierra Nevada, USA)

representing a specific combination of elevation, animal

diversity, and vegetation structure (Krause et al., 2011).

AM and FM spectra were computed for each soundscape.

In the first set of analyses (analysis of variance, ANOVA),

we tested whether specific modulation features show sub-

stantial changes across conditions (habitats, times of the

day, seasons). The second set of analyses examined the

capacity of the support vector machine to discriminate nat-

ural soundscapes on the sole basis of AM and FM spectra.

Showing that these perceptually inspired representations

contain enough information to classify soundscape proper-

ties is indeed crucial to understand if and how humans use

them to perceive their natural acoustic environments.

These two analyses are complementary. The Bayesian

analyses of variance (BANOVA) allowed us to determine

which parts of the representations are relevant, whereas the

classification analyses allowed us to determine whether the

different factors are discriminable based on the representa-

tions. The relevance of the present findings to psycho-

acoustical, bioacoustical, and eco-acoustical research is

discussed in Sec. IV.

II. EXPERIMENTS

A. Methods

1. Habitats and soundscapes: The SEKI study

The present research is based on the habitats and associ-

ated soundscapes described in the “SEKI” study conducted

by Krause et al. (2011). This study took place in the
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National Sequoia Park located in the southern Sierra Nevada

east of Visalia, CA (USA). The original goal of the SEKI

study was to quantify and assess the diurnal and seasonal

variations of biophony of the park’s soundscape within and

across several habitats belonging to the same biome (a tem-

perate coniferous forest). This park was chosen by Krause

et al. (2011) because it preserves a landscape that is still

comparable to the southern Sierra Nevada before Euro-

American settlement, and it belongs to an area designated as

a biosphere by UNESCO in 1976.1 Indeed, the National

Sequoia Park is characterized by a rich diversity of plants

(estimated based on unsupervised Landsat thematic mapper

satellite imagery) and vertebrate species inhabiting the park

(e.g., coyote, badger, black bear, bighorn sheep, deer, fox,

cougar, woodpecker, turtle, owl, snake, wolverine, frog,

muskrat, and two hundred species of birds).2

Within this park, Krause et al. (2011) selected four pris-

tine habitats representing unique combinations of elevation

and vegetation diversity, ranging from old growth forest to

grasslands according to telemetry data, to conduct acoustic

recordings during the four seasons [fall (October), winter

(January), spring (May), and summer (July)] and at four dif-

ferent times of day [dawn (6:00), midday (12:00), dusk

(17:00), and nighttime (21:00)]. The four locations were (1)

Crescent Meadow (CM), located at 7000 feet (2154 m;

N36� 33.364 W118� 44.867), a meadow surrounded by

sequoia trees; (2) Shepherd Saddle (SH), located at 3000

feet (925 m; N36� 29.470 W118� 51.142), a dry savannah

chaparral (with high winds); (3) Buckeye Flat (BF), located

at 2900 feet (890 m; N36� 31.185 W118� 45.692), a riparian

area associated with a river (producing a relatively loud

stream); and (4) Sycamore Springs (SY), located at 2100

feet (645 m; N36� 29.470 W118� 51.225), a foothill site

dominated by an oak savannah.

2. Acoustic database and results of the SEKI study

The recording equipment consisted of a Sony M1

Digital Audio Tape (DAT) recorder (Tokyo, Japan), and a

Sennheiser MKH30/40 MS microphone system (Wedemark,

Germany; consisting of piggy-back mounted microphones

on a Rycote suspension and enclosed in a Rycote zeppelin

windshield and windjammer cover; Stroud, UK). The micro-

phone systems were, in turn, mounted on tripods set at 5 feet

(1.524 m) above ground level. All systems were calibrated

each day with -30 dB levels at the recorder screen meter rel-

ative to a 64-dB white noise signal received at the

Sennheiser MKH40 capsule. All master field recordings

were originally captured in mid (channel 1) and side (chan-

nel 2) unencoded. Readers are referred to the original publi-

cation (Krause et al., 2011) for detailed information about

the remaining aspects of digital-audio recording equipment.

Recordings were made during the period of September 2001

through October 2002. A total of 64 h of recordings (i.e., 1-

h recording for each of the 64 recording conditions: 4 habi-

tats � 4 seasons � 4 times of the day) was split into 30-s

samples (mono files, 22 kHz sampling rate, 16 bit; wav

format) at 5-min intervals. The soundscape database was

therefore composed of 768 30-s files, that is, 12 30-s-long

recordings for each of the 64 recording conditions. This

resulted in a 6.4-h dataset.

Krause et al. (2011) computed the normalized power

spectral density (PSD) of the audio recordings. An estimate

of biophony (called “biopeak”) was defined as the highest

PSD value within the range of 2–8 kHz. The results showed

large diurnal and seasonal variability in biophony specific to

each habitat. The analysis of PSD values combined with

careful listening to the recordings revealed that biophony

resulting from the vocalizations of birds in the dawn chorus

and insects in the night chorus at the study locations was

significantly higher at nighttime in fall and at dawn in spring

than in the other seasons and periods of the day. In contrast,

vocal activities produced by terrestrial organisms decreased

during daytime in the fall and during evening and nighttime

in the winter.

Given the sensitivity and pattern limits of the mid/side

microphone system employed, a careful review of the audio

recordings provided some indication about animal and

insect biodiversity in each habitat. For example, BF

[American robins (Turdus migratorius); American dippers

(Cinclus mexicanus); unidentified insects; note that the

soundscapes associated with this habitat were dominated by

the sound of the river]; SY [acorn woodpeckers

(Melanerpes formicivorus), the dominant source of bio-

phony in this habitat; mourning dove (Zenaida macroura)];

SH (unidentified flies; unidentified birds); CM [flies; uniden-

tified birds; frogs, American robins (Turdus migratorius)].

SY was judged as containing the greatest acoustic activity

related to biophony. Globally, the frequency spectrum of the

acoustic signature ranged below about 0.2 kHz for flies,

above 2 kHz for birds, and between 0.6 and 2 kHz for frogs.

Still, metrics derived from the power spectrum or from

spectrographic representations, such as PSD, have little

capacity, if any, to distinguish between acoustic events

occurring at different time scales within the same spectral

region. In contrast, the potential merits of the proposed per-

ceptually inspired temporal-modulation analysis are an

increased ability to understand human decision-making and

improved accuracy of a classification algorithm to discrimi-

nate soundscapes such as those described in the SEKI study.

3. Temporal-modulation analysis: AM and FM spectra

Three temporal-modulation spectra were calculated from

each recording in the database: amplitude modulation ampli-

tude spectrum (AMa), amplitude modulation index spectrum

(AMi), and frequency modulation normalized spectrum (FMn).

The computation pipeline was very similar to the one

used in Varnet et al. (2017). Sounds were first equalized in

power (root mean squared value normalized to one) and

passed through an outer-middle ear filter (Moore et al.,
1997), then decomposed by a filterbank simulating the reso-

lution of the human cochlea. Here, linear gammatone filters

(Patterson et al., 1995) were used to simulate the bandpass
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filtering of the basilar membrane in the cochlea. Each gam-

matone filter was 1 equivalent-rectangular-bandwidth (ERB)

wide (Glasberg and Moore, 1990). There were 32 gammatone

filters with center frequencies spanning the range from 70 to

8254.4 Hz (1 gammatone per ERB). For each gammatone

channel, the Hilbert envelope was extracted and its PSD was

calculated on 100 logarithmically spaced samples from 0.5 to

150 Hz. Finally, the AMa spectrum was obtained by taking

the squared root of the envelope power spectra. Contrary to

Varnet et al. (2017), modulation spectra were not averaged

across audio-frequency bands but kept as two-dimensional

(2-D) representations, i.e., as functions of audio frequency

and modulation frequency, in order to retain the detail of the

localization of acoustic events in the spectral and modulation

domains.

The AMi (modulation index) spectrum was based on the

same gammatone envelopes as the AMa spectrum. Contrary

to the AMa spectrum, the AMi spectrum uses one-octave

bandpass modulation filters (nine filters from 0.5 to 130 Hz

with their bandwidths proportional to center frequency) and

a normalization by the mean amplitude. This mimics the

selectivity of the human auditory system when processing

AM stimuli (Dau et al., 1997; Ewert and Dau, 2000). Note

that because of the initial root-mean-squared power normali-

zation of the stimulus, the AMa and AMi represent the

relative—not absolute—amount of AM. Finally, the FMn

spectrum was obtained by taking the FM in each gammatone

(instead of the AM in the AMa case) as the derivative of the

unwrapped angle of the Hilbert response (Hilbert, 1912) mul-

tiplied by 1/2p. Low-energetic segments [envelope of the

signal below a threshold of -13 dB root-mean-square (rms)]

were removed from the FM component and replaced with

NaNs (“not a number”) before further analysis. We then cal-

culated the square root of its PSD with a Lomb periodogram

(Press et al., 1992) on 200 logarithmically spaced samples

from 0.5 to 200 Hz, and each obtained FM spectrum was nor-

malized by the bandwidth of the corresponding gammatone

channel. The reader is referred to Varnet et al. (2017) for a

detailed description of the AM and FM spectra and a link to

the custom-built MATLAB scripts used in this study.

Two biologically relevant characteristics were extracted

from each of the three modulation spectra: the total ampli-

tude in the 2–8 kHz audio band for the 0–10 Hz or

30–100 Hz modulation regions. These regions of interest

were defined before any further analysis based on biological

considerations (Krause et al., 2011). The six resulting

metrics were expressed in dB. The distinction between rela-

tively slow (0–10 Hz) and fast (30–100 Hz) temporal-

modulation bands reflects the different percepts evoked by

slow and fast rates of sinusoidal AM. Humans perceive AM

at rates <20 Hz as intensity fluctuations and hear roughness

or pitch at higher rates.

4. Bayesian ANOVA

The strength of the effects of site and time conditions

on the modulation metrics was estimated by an ANOVA.

This first analysis allowed us to test whether specific modu-

lation features differ across conditions. The ANOVA was

fitted using Bayesian modelling (BANOVA; Kruschke,

2010). The advantage of the Bayesian approach over the fre-

quentist approach is that it allows the use of hierarchical pri-

ors, which makes the inference both more robust and able to

deal with missing data (such as in the case of the FMn

spectra).

More precisely, the analysis was based on a linear

model with the (standardized) modulation metrics in each

recording as dependent variable, predicted by the three four-

level factors: site condition PC (factors: CM, SY, BF, and

SH), time-of-the-day condition TC (dawn, midday, dusk,

and nighttime), and season condition SC (fall, winter,

spring, and summer). The model formula included an inter-

cept b0, the main effects of each factor (9 free parameters),

as well as all possible interactions between them (54 free

parameters). Each of these parameters were drawn from a

normal distribution with zero mean and a standard deviation

estimated independently for each condition (hierarchical

prior with assumption of no effect). The prior distributions

chosen for the standard deviation parameters were only

weakly informative, with a folded-t positive distribution as

described in Kruschke (2010). The distribution for the indi-

vidual measures was normal with a standard deviation

derived from a uniform prior between zero and ten.

All Bayesian analyses were conducted using JAGS

(Plummer, 2003). The posterior probability distribution of

the parameters in the hierarchical ANOVA described above

was obtained through Gibbs sampling. This iterative process

generates plausible instances of each parameter value, con-

ditional to the values of other variables, in each sampling

step. Then, the estimates and credible intervals of the

parameters are derived from the overall distribution of indi-

vidual values obtained in the process. Seven chains were run

independently with 2000 burn-in initial iterations (estimates

based on 8000 iterations in each chain) and checked visually

for convergence. Throughout this paper, Bayesian estimates

will be reported along with their 99% credible intervals

(CI99%), providing an assessment of the reliability of the

estimate.

5. Automatic classification using support vector
machines

In order to evaluate more directly the extent to which

the previous representations (AMa, AMi, FMn) embed rele-

vant information related to the different factors, we tested

whether it is possible to train a classifier to discriminate the

main factors (PC, TC, SC) based on this raw perceptually

inspired representation. This approach stands out from the

BANOVA as it provides a way to assess whether the repre-

sentations are relevant regarding soundscape classification

without any a priori knowledge on the cue being sought. In

addition, this approach aimed to investigate a possible non-

linear relationship between sound representations and

soundscape categories, whereas the BANOVA is based on

linear regressions. A subsequent analysis per place was also
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conducted as habitats showed strong acoustic differences.

Nevertheless, in contrast to the BANOVA, this analysis is

less directly interpretable. The information from the repre-

sentations useful for the classifier are indeed less clear.

For each factor and each representation, we trained a

multiclass Support Vector Machine (SVM) classifier with a

radial basis function as a kernel (SVM-RBF). The training

dataset was composed of the same recordings used in the

previous statistical analysis. Each recording representation

was first vectorized. In order to determine the best parame-

ters of the RBF (C, Gamma), a grid-search with fivefold

cross-validation with the accuracy as scoring was employed

(C in [-3;3] and Gamma in [-3;3]). The classifier was then

refit with the best parameters, and its accuracy was evalu-

ated based on a tenfold cross-validation in order to avoid

overfitting. As each factor has four levels, the chance level

was defined at 25% of accuracy. The analysis per place was

performed in the same way. It must be noted that this analy-

sis did not aim to set up the best network to classify the dif-

ferent factors from these perceptually inspired

representations: The underlying goal was to test the extent

to which these representations embed perceptually relevant

information. To perform these analyses, we used the scikit-

learn library (Pedregosa et al., 2011) dedicated to machine

learning analyses in Python.

B. Results

1. Soundscapes structure in the AM domain

a. Changes in AM cues across habitats. AMa and

AMi spectra (Fig. 1) show the variations in AM energy (in

dB) as a function of AM rate (in Hz, x axis) and center fre-

quency of audio-frequency channels (in Hz, y axis). For

each habitat (SY, BF, CM, SH), AMa and AMi spectra were

averaged across times of the day and seasons. Figure 1

shows that these average AMa (left panels) and AMi spectra

(right panels) are relatively similar across habitats.

1. AMA spectra. As for AMa spectra, most of the mod-

ulation energy is localized in the higher audio-frequency

channels (>2–3 kHz) for the four habitats with BF showing

the lowest amount of modulation energy. At high audio fre-

quencies, the distribution of modulation energy across

audio-frequency channels varies somewhat across habitats

SY, CM, and SH, and most of the modulation energy is lim-

ited to relatively slow rates (<10–50 Hz). Modulation

energy at very slow rates (�3 Hz) corresponds to some of

the bird vocalizations. In summary, the structure of sound-

scapes in the AM domain is relatively simple and compara-

ble across habitats. Still, some differences appear across the

four habitats, suggesting that the soundscapes associated to

each habitat may be discriminated and classified on the sole

basis of these AMa cues.

2. AMi spectra. The combined effects of cochlear and

modulation filtering together with the use of a metric invari-

ant with sound level (the modulation index, AMi) drastically

changes the representation of the modulation content of the

signal compared to the AMa spectra. This is due to the pro-

gressive broadening of cochlear and modulation filters with

center audio frequency and the best AM rate, respectively.

First, peaks in modulation energy appear along the diagonal

of the “AMi spectra”-based graphical representation for the

four habitats due to the intrinsic modulations in the audio

FIG. 1. (Color online) Average AM spectra across habitats (SY, BF, CM, SH). For each habitat, AM spectra are averaged across times of the day and sea-

sons. AMa (left) and AMi (right) spectra are plotted in dB (hue code; see below) as a function of modulation rate (abscissa) and audio frequency (ordinate)

for each habitat. The hue value (from violet to yellow) covers a 20-dB range for AMa spectra and a 9-dB range for AMi spectra. Modulation spectra are rela-

tively similar across habitats. Most of the modulation energy is limited to relatively slow rates and localized in the higher audio-frequency channels for the

four habitats. Modulation energy at very slow rates corresponds to bird vocalizations.
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bands of increasing bandwidths. The high amount of modu-

lation energy in the lower (<500 Hz) and, to a much lower

extent, in the middle part (1–2 kHz) of the spectra corre-

sponds to a loud source of background noise of geophysical

origin (e.g., wind) with some contribution of biological

sounds (e.g., insects), with this sound source being loudest

for CM. This specific partitioning of modulation energy

across audio bands enhances the difference between habitat

BF and the remaining three habitats (CM, SY, and SH) with

BF showing little modulation energy, if any, in the higher

part of the audio-frequency spectrum. It also enhances the

difference across CM, SY, and SH: SY and SH show peaks

in modulation energy between about 2 Hz and 10–50 Hz,

whereas CM shows modulation energy for fast rates

(>10 Hz) only. Modulation energy around 2 Hz corresponds

to bird vocalizations. These differences reflect a larger con-

tribution of geophysical sounds (e.g., the stream of the

nearby river) in BF compared to the other habitats and may

indicate a lower amount of biological activity in this habitat.

In summary, the structural differences in soundscapes across

habitats are enhanced when increasing the biological rele-

vance of the modulation analysis.

b. Changes in AM cues across times of the day. For

each time of the day, AMa and AMi spectra were averaged

across habitats and seasons. These average AM spectra are

shown in Fig. 2.

1. AMa spectra. A clear difference appears between

times of the day in the higher audio-frequency channels:

modulation energy is clearly lowest at nighttime compared

to the other time of the day and highest at dawn. Modulation

energy is always concentrated below about 10 Hz with a

peak around 2 Hz reflecting bird choruses.

2. AMi spectra. Again, modulation filtering enhances

the differences across AMi spectra, especially in the low

audio-frequency region where modulation energy peaks at

midday and in the high audio-frequency region where mod-

ulation energy peaks between 2 and 10–50 Hz at dawn and

drops to the lowest values at all rates at nighttime. In con-

clusion, the structure of soundscapes in the AM domain

shows large diurnal variations irrespective of habitat and

season, reflecting mainly diel cycles in biological activity

(i.e., morning and evening choruses produced by birds).

c. Changes in AM cues across seasons. For each sea-

son, AMa and AMi spectra were averaged across habitats

and moments of the day. These average AM spectra are

shown in Fig. 3.

1. AMa spectra. Compared to the other seasons, winter

shows the lowest levels of modulation energy in the high-

frequency region of the audio-frequency spectrum (reflect-

ing a substantial drop in biological activity). Spring is char-

acterized by the highest levels of modulation energy in the

high-frequency region of the audio-frequency spectrum

(>2–3 kHz). In this high-frequency region, spring, sum-

mer, and fall show peaks in modulation energy around

2 Hz, reflecting bird choruses.

2. AMi spectra. The drop in biological activity during

winter is magnified in the AMi spectra. Spring, and to a much

lower extent, fall and summer, show a peak in modulation

energy at rates between 10 and 50 Hz in high-frequency chan-

nels. Detailed inspection of AMa and AMi spectra during

the spring season reveals two clear peaks around 2 and

50 Hz at nighttime in the SH habitat as shown in Fig. 4.

These peaks correspond, respectively, to bird and insect

choruses. This highlights the relevance of the modulation

FIG. 2. (Color online) Average AM spectra across times of the day (dusk, midday, dawn, nighttime). For each time of the day, AM spectra are averaged

across habitats and seasons. See Fig. 1 for other details. Modulation spectra show large diurnal variations (modulation energy being lowest at nighttime com-

pared to the other times of the day and highest at dawn) reflecting mainly diel cycles in biological activity (i.e., choruses produced by birds).
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domain for studying these specific sounds: other representa-

tions, such as the power spectrum in Krause et al. (2011),

would not have been able to separate these two sources as

they are contained in the same frequency band.

2. Soundscapes structure in the FM domain

FMn spectra show the variations in frequency-

modulation energy (in dB) as a function of the center fre-

quency of audio-frequency channels (in Hz). More pre-

cisely, FMn spectra show the distribution of modulation

energy normalized by the bandwidth of the audio-frequency

channel. Due to the FM extraction algorithm, some parts of

the FM spectra were not defined in certain conditions. For

the sake of legibility, the averaged representations below

were calculated by disregarding the missing data. However,

they were taken into account as missing data in the

BANOVA.

a. Changes in FM cues across habitat. For each habi-

tat, FMn spectra were averaged across times of the day and

seasons. Figure 5 shows that these averaged FMn spectra

are relatively similar across habitats. As for AM spectra, the

strongest FM components (<10–50 Hz) are localized in the

higher audio-frequency channels (>2–3 kHz) for the four

habitats with BF showing, overall, the lowest amount of

modulation energy. As indicated in Sec. II B 1 detailing AM

spectra, these modulation components correspond mainly to

bird vocalizations. The observed differences in FMn spectra

FIG. 3. (Color online) Average AM spectra across seasons (fall, winter, spring, summer). For each season, AM spectra are averaged across habitats and times of

the day. See Fig. 1 for other details. Winter shows the lowest levels of modulation energy in the high-frequency region of the audio-frequency spectrum, reflecting

a substantial drop in biological activity. Spring shows the highest levels of modulation energy in the high-frequency region of the audio-frequency spectrum.

FIG. 4. (Color online) Average AM spectra for the SH habitat at nighttime during spring. See Fig. 1 for other details. The modulation spectra reveal two

peaks around 2 and 50 Hz, corresponding, respectively, to bird and insect choruses.
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reflect a higher amount of biological activity in the CM, SY,

and SH habitats compared to BF, which is dominated by the

sound of a river. Interestingly, CM and SH also show sub-

stantial FM energy in the low (100–200 Hz) audio-

frequency channels, revealing some contribution of other

biological sounds (e.g., insects).

b. Changes in FM cues across times of the day. For

each time of the day, FMn spectra were then averaged

across habitats and seasons. These averaged modulation

spectra are shown in Fig. 6. As for AM spectra, a clear dif-

ference appears between times of the day in the higher

audio-frequency channels where FM energy is clearly low-

est at nighttime compared to the other times of the day and

highest at dawn. This FM component reflects bird choruses.

In addition, a relatively strong FM component of biological

origin is observed in the low (100–200 Hz) audio-frequency

channels during the morning.

c. Changes in FM cues across seasons. For each sea-

son, FMn spectra were finally averaged across habitats and

moments of the day. These averaged modulation spectra are

shown in Fig. 7. As for AM spectra, winter shows the lowest

levels of FM energy in each audio-frequency channel com-

pared to the other seasons, reflecting a substantial drop in

biological activity. Spring and summer are characterized by

the highest levels of FM energy in the middle and high-

frequency region of the audio-frequency spectrum, reflect-

ing bird choruses.

FIG. 5. (Color online) Average FMn spectra across habitats. For each habitat, FMn spectra are averaged across times of the day and seasons and plotted in

dB (hue code; see below) as a function of modulation rate (abscissa) and center frequency of auditory channels (ordinate). FMn spectra show FM depth nor-

malized by the bandwidth of cochlear filters. The hue value (from yellow to green) covers a 9-dB range. FMn spectra are relatively similar across habitats.

The strongest FM components are localized in the higher audio-frequency channels for the four habitats with BF showing, overall, the lowest amount of

modulation energy. These modulation components correspond mainly to bird vocalizations.
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3. Statistical analysis of variations in modulation cues
across conditions

Several metrics were extracted from the AM (AMa,

AMi) and FMn spectra to assess the statistical significance of

the variations observed in the previous descriptive analysis.

For each acoustic sample, total AM and FM amplitudes

were computed over the 2–8 kHz audio band for the 0–10 Hz

and 30–100 Hz ranges, resulting in four AM metrics:

AMa[0–10 Hz], AMa[30–100 Hz], AMi[0–10 Hz], AMi[30–100 Hz] and

two FMn metrics: FMn[0–10 Hz], FMn[30–100 Hz]. Statistical

analyses were conducted to assess the effects of each experi-

mental condition [habitat (four levels), time of the day (four

levels), season (four levels)] on each modulation metric.

Figure 8 shows the results of this analysis. The model com-

prises a large number of parameters, and only the main

effects are presented here. All CI99% for interaction effect

included zero.

The variations in AMa and AMi metrics across habitats,

times of the day, and seasons are provided as supplementary

Figs. 1 and 2.3 The variations in FMn metrics across habi-

tats, times of the day, and seasons are provided as supple-

mentary Fig. 3.3

a. AM metrics. For each habitat, AM power in both low

(0–10 Hz) and high (30–100 Hz) modulation bands is usually

higher during fall and spring and lowest during winter, reflect-

ing variations in biophony across seasons and a large drop

in biological activity during winter. The comparison of

AMa[0–10 Hz] between spring and winter yielded a difference of

3.56 dB (CI99% ¼ [0.55,6.21]); the difference was of 5.38 dB

for the AMi[0–10 Hz] (CI99% ¼ [2.53,8.07]). In the 30–100 Hz,

the difference was 2.57 dB (CI99% ¼ [1.17,3.86]) for the AMi

but only 0.75 dB for the AMa (CI99% ¼ [–0.33,2.03]).

Moreover, AM energy in both the low and high modulation

bands is usually highest in the morning during the spring and

fall seasons, reflecting mainly bird choruses. For example,

across all seasons, the comparison of AMa[0–10 Hz] between

morning and the other times of the day was 4.97 dB (CI99%

FIG. 6. (Color online) Average FMn spectra across times of the day. See Figs. 1 and 2 for other details. FM energy is lowest at nighttime compared to the

other times of the day and highest at dawn. This modulation component corresponds to bird choruses.
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¼ [0.52,11.16]), whereas it was 5.40 dB (CI99% ¼ [1.10,11.35])

for the AMi[0–10 Hz]. Habitats BF, SY, and SH show a peak in

modulation energy in the high modulation band at nighttime

during fall and/or summer, reflecting insect choruses.

Overall, the same pattern is observed for slow and fast

frequency modulations (i.e., FMn metrics for 0–10 Hz and

30–100 Hz show similar trends): FMn spectra change glob-

ally (without any change in the relative distribution of mod-

ulation energy) across habitat, times of the day, and season

(this was already true for AMa spectra). AMa and FMn met-

rics are somewhat correlated. This most likely results from

FM-to-AM conversion at the output of cochlear (gamma-

tone) filters (see Sec. III) but also possibly from computa-

tional artefacts (since the signals for which FM is not

extracted correspond to those where the amplitude is at its

lowest).

In summary, BANOVA reveals that both slow

(0–10 Hz) and faster (30–100 Hz) modulation features differ

across habitat, time of the day, and season, although the

effect was stronger for slow modulation features.

4. Automatic classification of AM and FM spectra

Table I summarizes the averaged accuracies of the ten-

fold cross-validated SVM þ RBF classifiers for each factor

(see also supplementary Fig. 43). The results showed that

each representation can be used to classify each factor above

chance (>0.25). It must be noted that the chance level corre-

sponds to a classification made totally randomly, neverthe-

less, it is possible to obtain accuracy significantly above

chance but which remains low. It is noticeable that AM

cues, i.e., AMa and AMi, provide better classification accu-

racies (�0.6) than the FMn (�0.5). Table II presents the

averaged accuracies of the tenfold cross-validated SVM

þ RBF classifiers for the season and the time of the day at

each habitat. This analysis strikingly shows that the ability

FIG. 7. (Color online) Average FMn spectra across seasons. See Figs. 1 and 3 for other details. Winter shows the lowest levels of modulation energy in each

audio-frequency channel compared to the other seasons, reflecting a substantial drop in biological activity.

J. Acoust. Soc. Am. 147 (5), May 2020 Thoret et al. 3269

https://doi.org/10.1121/10.0001174

https://doi.org/10.1121/10.0001174


to classify the season and the time of the day differs depend-

ing on the habitat. CM and SH led to higher classification

accuracies than SY and BF based on these AM and FM

cues. Nevertheless, it must be noted that all the training led

to classification accuracies above chance. As AMa and FMn

have 3200 dimensions (32 frequency channels � 100 rates)

and AMi has only 288 (32 frequency channels � 9 rates),

we also tested whether their higher dimensionality might

have influenced the final classification accuracies. We

downsampled AMa and FMn by a factor of 11 leading to

291 dimensions, which is comparable to the number of

dimensions of AMi. The results, in parentheses in Tables I

and II, revealed that the classification accuracies are only

slightly affected by the downsampling with accuracies of

AMa and FMn classifications being 0.05 and 0.0001 lower,

respectively, on average across the different factors.

Globally, these analyses demonstrate that the three per-

ceptually inspired representations used in this study provide

enough information to classify well the different factors

related to natural soundscapes according to habitat, season,

and time of the day. They also indicate that different habi-

tats are associated with different acoustic variations that are

more or less distinguishable. These acoustic variations

depend potentially on differences in the biodiversity of each

habitat in different seasons. The latter results are interesting

as they reveal that relevant cues are embedded in the acous-

tic signal depending on the habitat, season, and time of the

day. We thus expect that human and non-human animals

should be able to perceive these subtle differences and this

ability shapes the evolution of their auditory perception of

the environment.

III. GENERAL DISCUSSION

A. Main findings

Three questions may guide the analysis of natural

soundscapes from the psychoacoustical but also neurophysi-

ological, bioacoustical (i.e., ethological), and ecological per-

spectives: (i) What are the auditory cues available to the

auditory systems of human and non-human animals when

listening to natural soundscapes and their variations? (ii) Do

humans and non-human animals use these cues to evaluate

the biological and geophysical attributes of a given ecosys-

tem? (iii) Could this inform current work in soundscape

ecology and ecological acoustics, such as recent attempts to

assess biodiversity in ecosystems around the world based on

acoustic recordings of soundscapes?

The goal of the present study was to answer the first

question using a model-based approach aiming to go beyond

previous estimates of acoustic activity derived from spectro-

graphic data. The present work was limited to the human

perspective. To address this issue, soundscapes recorded in

four distinct habitats (within the same biome) were proc-

essed via computational models of the human auditory sys-

tem emphasizing temporal-modulation processing. The

results suggest that: (1) the soundscapes of distinct habitats

of the same biome differ significantly in terms of their AM

and FM content; (2) in each habitat, diurnal and seasonal

variations are associated with salient and statistically signifi-

cant changes in temporal (AM and FM) cues; (3) these mod-

ulation cues occur in either the low (<1–2 kHz) or high

FIG. 8. (Color online) Results of the BANOVA. PC, SC, and TC stand for con-

ditions place, season, and “time of the day.” Weights associated to the main

effects in the BANOVA models are shown for the six metrics together with their

credible intervals. Zero (dotted line) indicates no effect of the corresponding

level, compared to the average across all four levels in this condition. The same

pattern of weights is found for each metric, although differences are less pro-

nounced for AMa[30–100 Hz]. Overall, these data reveal that both slow (0–10 Hz)

and faster (30–100 Hz) modulation features differ across habitat, time of the day,

and season, although the effect was stronger for slow modulation features.
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(>2–3 kHz) audio-frequency range; (4) biophonic cues cor-

respond to specific slow (<10 Hz) and/or fast (30–100 Hz)

temporal-modulation cues, peaking around 2 Hz for bird

choruses and around 50 Hz for insect choruses) in the high

(>1–3 kHz) audio-frequency range; (5) geophonic cues

correspond to relatively slow (<10–50 Hz) modulation cues

in the low (<1–2 kHz) audio-frequency range; and (6)

soundscapes and their variations can be classified above

chance automatically based on these perceptually inspired

representations.

B. Relevance to psychoacoustics

The biologically inspired representations used in the

present study reveal unique partitioning of the AM and FM

spectra for soundscapes emanating from natural habitats.

Interestingly, the AM and FM spectra of the soundscapes

under study differ substantially from those obtained for

speech sounds from ten languages of the world (Varnet

et al., 2017). Both AM and FM spectra computed for natural

soundscapes showed higher modulation energy in the

2–8 Hz range over audio-frequency channels centered

between 0.1 and 1 kHz and above 3 kHz. Complementary

studies of soundscapes emanating from other natural habi-

tats and biomes are warranted to corroborate this finding.

Overall, the present results indicate that across the range of

soundscapes studied here, humans should be able to discrim-

inate habitats accurately and perceive the changes in their

biophonic components associated with times of the day and

seasons on the basis of the temporal-modulation information

conveyed by soundscapes. Further investigations will be

dedicated to test this hypothesis. With regard to the bio-

phonic component, AM power at relatively low (�2 Hz) and

high (�50 Hz) rates should play an important role in the

identification of bird vocalizations and insect choruses,

respectively. The geophonic component, on the other hand,

is mainly associated with a low-frequency noise (mostly

caused by wind or a stream) and is only weakly reflected on

the spectrum because of outer/middle ear filtering and nor-

malization by the mean amplitude.

Based on these first results, we hypothesize that humans

use these temporal-modulation cues to form an “image” of

their own habitat, “a scene that helps to establish our sense

of place and our orientation to it,” as formulated by Fay

(2009). Sound textures correspond to acoustic signatures of

the surrounding environment produced by biological or geo-

physical sounds resulting from the superposition of many

similar events. These textures are thought to be represented

in the auditory system by time-averaged statistics derived

from temporal-modulation cues (McDermott and

Simoncelli, 2011; McWalter and Dau, 2017). Synthetic tex-

tures can be derived from recordings of natural soundscapes,

such as the present ones, by passing an original sound

recording to the current model of modulation processing,

measuring its texture statistics, and generating the target tex-

ture statistics. Synthesis begins with Gaussian noise and iter-

atively adjusts the statistics to the target values. The system

outputs a synthetic texture with the same time-averaged sta-

tistics as the original texture. Such synthetic textures could

be useful to assess empirically whether or not these modula-

tion cues and their variations are actually perceived and

used by human observers. In particular, evaluating their rel-

evance for auditory discrimination tasks should allow us to

assess the capacity to detect changes in habitats, seasons,

times of the day, and also sound-source segregation (i.e.,

auditory scene analysis) and distance perception (based on

texture gradients, as in vision). Finally, recent psychoacous-

tical work on bottom-up auditory attention reveals that the

image of natural soundscapes that our auditory system builds

is also shaped by the relative auditory “salience” of auditory

objects composing these soundscapes (Huang and Elhilali,

2017). Auditory salience—the phenomenon by which these

auditory objects stand out from the soundscape—was found

to be multidimensional and context dependent: it depends

on many auditory features, such as loudness, pitch, spectral

shape, and AM cues, and information extracted at different

time scales (Huang and Elhilali, 2017). Further work is

therefore warranted to assess the contribution of modulation

TABLE I. Means accuracies and standard errors of the SVM þ RBF trained

with the best C and Gamma parameters for the main factors (place, season,

time of the day). The averaged accuracies of the downsampled versions are

presented in parentheses.

AMa AMi FMn

Habitat 0.66 6 0.08 (0.59) 0.63 6 0.08 0.49 6 0.09 (0.50)

Season 0.64 6 0.07 (0.58) 0.62 6 0.08 0.49 6 0.09 (0.51)

Time of the day 0.61 6 0.08 (0.49) 0.63 6 0.09 0.49 6 0.09 (0.45)

TABLE II. Means accuracies and standard errors of the SVM þ RBF trained with the best C and Gamma parameters for each place and the two subsequent

factors (season, time of the day). The averaged accuracies of the downsampled versions are presented in parentheses.

Habitat AMa AMi FMn

CM Season 0.77 6 0.09 (0.64) 0.87 6 0.08 0.91 6 0.06 (0.81)

Time of the Day 0.49 6 0.16 (0.46) 0.74 6 0.12 0.61 6 0.13 (0.59)

SY Season 0.49 6 0.08 (0.45) 0.56 6 0.09 0.44 6 0.11 (0.51)

Time of the Day 0.54 6 0.09 (0.54) 0.56 6 0.13 0.54 6 0.11 (0.51)

BF Season 0.66 6 0.22 (0.62) 0.69 6 0.21 0.66 6 0.18 (0.67)

Time of the Day 0.56 6 0.13 (0.51) 0.55 6 0.11 0.53 6 0.10 (0.54)

SH Season 0.72 6 0.18 (0.67) 0.67 6 0.17 0.51 6 0.22 (0.57)

Time of the Day 0.60 6 0.12 (0.66) 0.64 6 0.08 0.55 6 0.05 (0.57)
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cues, such as AM and FM cues, and auditory textures to the

space of auditory salience for natural soundscapes such as

those studied here.

C. Relevance to bioacoustics

This study was based on a decomposition of natural

soundscapes inspired by our current understanding of tem-

poral processing by the human auditory system. However,

AM and FM are also important features of the communica-

tion signals produced by non-human animals such as birds

and insects (e.g., Joris et al., 2004; Rees and Malmierca,

2005). The analysis of the AM and FM content of natural

soundscapes may therefore be useful for the study of animal

communication as already pointed out by Singh and

Theunissen (2003). Research in bioacoustics showed that

within a given habitat, two main evolutionary constraints

shape communication signals produced by living organisms

such as birds, anurans, and mammals: limited transmission

of communication signals caused by obstacles between

emitters and receivers and masking effects between the

sounds produced by co-occurring species. According to the

“acoustic adaptation hypothesis” (Morton, 1975; Ey and

Fischer, 2009), the acoustic properties of habitats resulting

from ground morphology and vegetation structure drives

organisms to adjust their acoustic production to maximize

their propagation. According to the “acoustic niche hypoth-

esis” (Krause, 1987; for reviews, see R€omer, 2013;

Schwartz and Bee, 2013; Brumm and Zollinger, 2013, in

Brumm, 2013), interspecific competition for a communica-

tion channel drives organisms to adjust their acoustic pro-

duction to minimize spectral and temporal masking effects

between interspecific signals.

The acoustic properties of a given habitat shape its

“modulation transfer function” that, in turn, constrains the

information-transmission capacity of this medium. This

view was implemented by Houtgast and Steeneken (1973;

see also Steeneken and Houtgast, 1980) and Plomp (1988)

to explain the intelligibility of speech by a human receiver

in terms of attenuation (i.e., reduction of modulation

strength) of crucial speech temporal-modulation cues caused

by noise, reverberation, and/or nonlinear distortions within

the communication channel. This led to the development of

the speech transmission index (STI) and related metrics

(e.g., the HASPI metric, Kates and Arehart, 2014) to predict

speech intelligibility in a variety of listening situations (for a

review, see Kates and Arehart, 2014). Consistent with this

view, Bosker and Cooke (2018) showed that normal-hearing

humans adjust the depth and rate of the temporal modula-

tions of their speech productions to overcome the effects of

background noise. The biologically inspired modulation

analysis of natural soundscapes performed in the present

study describes the modulation content (modulation strength

and rate) of communication signals in the AM and FM

domains within the habitat of the emitters. As a conse-

quence, it captures all sorts of dynamic interactions between

the organisms living in the habitat under study and their

acoustic environments. Once adapted to the auditory charac-

teristics of the species under study, this modulation analysis

may prove to be useful to test the assumption that as for

humans, non-human organisms adjust the modulation con-

tent of their acoustic production to maximize their transmis-

sion within their habitat.

Over the last decades, numerous psychoacoustical stud-

ies conducted with humans demonstrated the existence of

selective masking effects in the AM domain (e.g., Houtgast,

1989; Bacon and Grantham, 1989; Dau et al., 1997), the FM

domain (e.g., Rees and Kay, 1985), and between AM and

FM (Moore and Sek, 1996; Paraouty et al., 2016; King

et al., 2019). Masking effects between AM sounds are cur-

rently understood as resulting from the existence of tuned

filters in the AM domain (Houtgast, 1989; Bacon and

Grantham, 1989) implemented centrally (i.e., beyond the

cochlea) and those occurring between AM and FM as result-

ing from the conversion of FM into AM at the output of

cochlear filters (e.g., Saberi and Hafter, 1995) and from

post-sensory (i.e., cognitive) interference (e.g., King et al.,
2019). The AM and FM spectra of natural soundscapes

described in this study show that within the same audio-

frequency region, the acoustic production of different

species can yield modulation energy in non-overlapping

modulation channels (cf. Fig. 4). This suggests that non-

human organisms may also adjust their acoustic production

to minimize modulation-masking effects produced by heter-

ospecific signals and other environmental (e.g., geophysical)

sound sources contributing to natural soundscapes.

D. Relevance to soundscape ecology
and eco-acoustics

Soundscapes not only change as a function of habitat,

season, and time of the day, they also change as a result of

human activities and climate change and their subsequent

(detrimental) effects on biodiversity and other ecological

processes. Thus, monitoring soundscapes is useful to assess

ecological processes and the direct/indirect human impacts

on biomes and biotopes around the world (Sueur and Farina,

2015; Krause and Farina, 2016). The use of soundscapes has

recently proved to be a low-cost (passive recording devices

dedicated to air or water-borne sounds are relatively cheap),

non-invasive (these sensors do not interfere with the behav-

iour of animals), very efficient (they can operate on large

observations scale), and quite reliable proxy for assessing

several attributes of ecosystems such as biodiversity (e.g.,

Acevedo and Villanueva-Rivera, 2006; Sueur et al., 2008;

Farina, 2014; Sueur et al., 2014; Sueur and Farina, 2015).

From this perspective, clarifying the human and non-

human animal capacities to perceive soundscapes should

benefit the research conducted in soundscapes ecology and

ecological acoustics and lead to the development of new

metrics by revealing auditory cues and auditory processes

used by biological organisms to perceive efficiently changes

in natural soundscapes. Indeed, human and non-human audi-

tory systems are most likely optimized to detect and dis-

criminate important modulation cues thanks, in particular, to
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perceptual filters selectively tuned in the AM domain (e.g.,

Rodriguez et al., 2010). Consistent with this view, it is not

surprising that the present modulation analysis bears strong

similarities with the unsupervised multi-resolution analysis

developed by Ulloa et al. (2018) to assess animal acoustic

diversity in two habitats of the rainforest in Guiana.

IV. CONCLUSIONS

The current study aimed to characterize the AM and

FM information potentially used by humans when perceiv-

ing variations in soundscapes within and across the natural

habitats of a given biome. Soundscapes for four distinct hab-

itats (same biome) of a biosphere reserve were processed

via computational models of human auditory processing,

putting the emphasis on temporal-modulation processing

over a range of audio-frequency channels covering the lis-

tening bandwidth for humans (70–8500 Hz).

We found that: (1) soundscapes associated with a given

habitat can be distinguished in terms of AM and FM con-

tent; (2) in each habitat, diurnal and seasonal variations are

associated with salient and significant changes in temporal

(AM and FM) cues; (3) these modulation cues generally

occur in either the low (<1–2 kHz) or high (>2–3 kHz)

audio-frequency range; (4) biophonic cues correspond to

specific slow and/or fast temporal-modulation cues

(1–100 Hz) in the high (>1–3 kHz) audio-frequency range;

(5) geophonic cues correspond to relatively slow modulation

cues (<50 Hz) in the low (<1–2 kHz) audio-frequency

range; and (6) soundscapes and their variations can be clas-

sified relatively accurately based on these perceptually

inspired representations.

In conclusion, the current modeling study indicates that

temporal-modulation information may be used by humans

when perceiving variations in soundscapes within and across

the natural habitats of a given biome. Further work is

required to assess the capacity of human listeners to discrim-

inate natural soundscapes on the sole basis of these AM and

FM cues and clarify the exact nature of the auditory mecha-

nisms responsible for such a capacity. This approach may

also contribute to a better understanding of communication

strategies for various non-human organisms within their

own habitats and improve current algorithms used to moni-

tor biodiversity across habitats and biomes.
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