Using reverse correlation to study individual perception

Léo Varnet

École Normale Supérieure Paris

IDA/LSP day, 07/11/2022

Revcorr & individual perception

Léo Varnet

Introduction

Phonetic cues Aba/Ada experiment Segmentation cues

Conclusions

"Cracking the speech code": finding the auditory primitives of speech comprehension

 에 이후 [[특라나 등당][특]]]은 '후 관리,등당 이 [[러시라등북한·][특]] 에 이후 이야지이 한후 14컵이 에 자성 바건이 한 14컵이 에 이후 15월 200 이 이야 15월 200 Revcorr & individual perception

Léo Varnet

Introduction

honetic cues

ba/Ada experiment

Segmentation cues

Conclusions

୬**୦**୦ _{2/13}

"Cracking the speech code": finding the auditory primitives of speech comprehension

- Which acoustic cues allow the listener to differentiate one phoneme from another?
- Which acoustic cues underlie the segmentation of the speech signal into words?

Léo Varnet

Introduction

Phonetic cues Aba/Ada experiment Segmentation cues

"Cracking the speech code": finding the auditory primitives of speech comprehension

- Which acoustic cues allow the listener to differentiate one phoneme from another?
- Which acoustic cues underlie the segmentation of the speech signal into words?

No easy answer, due to the spectrotemporal complexity of natural speech.

Ƴ mo@][≓#┿ ≓ʊ &u=l][§@m []][]][] §U=l][@][]]

OFDI EFOMDO FOID

m Euff \$05日下本の ののき ズミッション Revcorr & individual perception

Léo Varnet

Introduction

Phonetic cues Aba/Ada experiment

Segmentation cues L'amie/La mie experimen

Auditory revcorr

Reverse correlation (aka **revcorr**) is the perfect tool to reveal perceptual cues used in a psychophysical task, based on purely behavioral data... in particular for auditory categorization tasks. [Varnet et al. 2013, 2015; Osses & Varnet, 2021; Varnet & Lorenzi, 2022]

Core idea: adding **random fluctuations** to the stimulus and measure how they affect the participant's responses on a trial-by-trial basis.

Original Article

High-Frequency Sensorineural Hearing Loss Alters Cue-Weighting Strategies for Discriminating Stop Consonants in Noise

Léo Varnet¹ ^{(IIII}, Chloé Langlet¹, Christian Lorenzi¹, Diane S. Lazard², and Christophe Micheyl³

Trends in Hearing Volume 23: 1–18 © The Author(s) 2019 Artide reuse publishes: sagepub.com/journals-permissions DOI: 10.1177/231216519867077 journals-sagepub.com/home.tia

Probing temporal modulation detection in white noise intrinsic envelope fluctuations: A reverse-correlation s

Léo Varnet⁸ and Christian Lorenzi⁸ Laboratoire des Systèmes Perceptifs, Département d'Études Cognitives, École Normale Supérieure, Université Paris Sciences & Lettres, Centre National de la Recherche Scientifique, 75005 Paris, France

Abstract

There is increasing evidence that (NH) individuals, even when we perceptual strategies is an importwo complementary approache noise and (b) measuring the reduspectrotemporal locations of The cue-weighting strategies we frequency loss, and 15 HI lists amplification to compensate 60 than on the low-frequency cui differences in internal noise. If frontiers in HUMAN NEUROSCIENCE METHODS ARTICLE published: 16 December 2013 doi: 10.3389/fnburn.2013.00865

Using auditory classification images for the identification of fine acoustic cues used in speech perception

Léo Varnet^{1,2,*}, Kenneth Knoblauch³, Fanny Meunier^{1,2,4} and Michel Hoen^{1,2}

¹ Neuroscience Research Centre, Brain Dynamics and Cognition Team, INSERM U1028, CNRS UMR5292, Lyon, France ² Ecole Doctorale Neurosciencea et Cognition, Université de Lyon, Université Lyon 1, Lyon, France ³ Integrative Neuroscience Department, Stem Cell and Brain Research Institute, INSERM U846, Bron, France Revcorr & individual perception

Léo Varnet

Introduction

Phonetic cues Aba/Ada experiment Segmentation cues

L'amie/La mie experimen

Conclusions

sury noise on sound perception results from the must mindom intrinsic evelope fluctuations arising from ex on this phenomenon to probe AM direction strate of the normal-hearing lineters were adseted to detect the phenomenon of the strategies and the strategies and every second strategies and the strategies and the errest-correlation analysis was then carried on the dsted strategies and the strategies influences simulated with different implementations of a modul and data, thus sufference and are violence for thated data, thus sufference and are violence for **Topic**: perception of stop consonants /b/ and /d/. **Targets**: 2 VCV sounds ($t_0=/aba/$ and $t_1=/ada/$) from the Oldenburg Logatome Corpus *[Wesker et al., 2005]*, equalized in duration and rms.

Revcorr & individual perception

Léo Varnet

Introduction

honetic cues

$\mathsf{Aba}/\mathsf{Ada}\ \mathsf{experiment}$

Segmentation cues L'amie/La mie experiment

Topic: perception of stop consonants /b/ and /d/. **Targets**: 2 VCV sounds (t_0 =/aba/ and t_1 =/ada/) from the Oldenburg Logatome Corpus [Wesker et al., 2005], equalized in duration and rms.

Revcorr & individual perception

Léo Varnet

Introduction

honetic cues

Aba/Ada experiment

Segmentation cues L'amie/La mie experiment

Aba/Ada experiment [Osses & Varnet, in prep.]

participant's response

Revcorr & individual perception

Léo Varnet

Introduction

honetic cues

Aba/Ada experiment

Segmentation cues L'amie/La mie experiment

Conclusions

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 5/13

Aba/Ada experiment [Osses & Varnet, in prep.]

/ada/

0.4 0.6 0.8

Time (s)

targets

/aba/

0.2 0.4 0.6 0.8 0 0.2

Time (s)

Revcorr & individual perception

Léo Varnet

Introduction

honetic cues

Aba/Ada experiment

Segmentation cues L'amie/La mie experiment

Conclusions

Auditory Classification Image (ACI): time-frequency matrix of decision weights. Shows how a specific noise configuration can mislead the participant.

Revcorr & individual perception

Léo Varnet

Introduction

honetic cues

Aba/Ada experiment

Segmentation cues L'amie/La mie experiment

Conclusions

<ロ > < 回 > < 目 > < 目 > < 目 > < 目 の へ の 6/13

Revcorr & individual perception

Léo Varnet

Introduction

honetic cues

Aba/Ada experiment

Segmentation cues L'amie/La mie experiment

Conclusions

<ロ > < 回 > < 目 > < 目 > < 目 > < 目 の へ の 6/13

Revcorr & individual perception

Léo Varnet

Introduction

honetic cues

Aba/Ada experiment

Segmentation cues L'amie/La mie experiment

Conclusions

• The analysis successfully identified the **main cue** for the task (F2 onset), consistent with the phonetic literature [Liberman, 1954]...

Revcorr & individual perception

Léo Varnet

Introduction

honetic cues

Aba/Ada experiment

Segmentation cues L'amie/La mie experiment

- The analysis successfully identified the **main cue** for the task (F2 onset), consistent with the phonetic literature [Liberman, 1954]...
- ...as well as several **secondary cues** (e.g., F1 onset).

Revcorr & individual perception

Léo Varnet

Introduction

Phonetic cues

Aba/Ada experiment

Segmentation cues L'amie/La mie experiment

- The analysis successfully identified the **main cue** for the task (F2 onset), consistent with the phonetic literature [Liberman, 1954]...
- ...as well as several **secondary cues** (e.g., F1 onset).
- Contrary to our preregistered hypothesis, we observed some meaningful **interindividual variability** in the pattern of secondary cues.

Cross-predictions

Revcorr & individual perception

Léo Varnet

participant's phoneme noise for trial i targets categorisation response /ada/ /aba/ Ν, "aba" $r_i =$ + 'ada" 0 0.2 0.4 0.6 0.8.0 0.2 0.4 0.6 0.8 Time (s) Time (s) ACI B aba 5115 ACI from - 3241 participant #2 E 2024 774 422 194 40 0.2 0.4 0.6 0.8 ada $P(r_i = "aba") = \phi\left(\underline{N_i} \cdot \boldsymbol{\beta} + c\right)$ Time (s)

Introduction

honetic cues

Aba/Ada experiment

Segmentation cues L'amie/La mie experiment

Conclusions

The similarity between listening strategies can be quantified by attempting to predict the responses of one participant using the ACI of another.

Cross-predictions

Léo Varnet

Introduction

honetic cues

Aba/Ada experiment

Segmentation cues L'amie/La mie experiment

Conclusions

• Our group of normal-hearing participants shows significant heterogeneity in their listening strategies: the ACI of one participant is better at predicting new data from this participant, rather than new data from another participant.

Cross-predictions

Revcorr & individual perception

Léo Varnet

Aba/Ada experiment

Crosspredictions (artificial listener) Crosspredictions (real participants) ΔPA (%) ΔPA (%) S01 A01 S02 A02 \$03 A03 S04 A04 S05 A05 ē so6 406 f sor A07 S08 808 S09 400 S10 A10 S11 A11 A12 \$12 and 5 5 5 5 5 5 5 5 5 5 5 × N ACI from ACI from

- Our group of normal-hearing participants shows significant heterogeneity in their listening strategies: the ACI of one participant is better at predicting new data from this participant, rather than new data from another participant.
- As confirmed with a simple model of the human auditory system.

L'amie/La mie experiment [Osses et al., in prep.]

Topic: Acoustic cues for the segmentation of a speech sentence into words. **Targets**: 2 phonetically identical sentences /selami/ (t_0 ="c'est l'amie" and t_1 ="c'est la mie"), equalized in duration and rms [*Spinelli al., 2010*].

The targets were divided into 100-ms segments. Then, the f_0 trajectory in each segment was replaced by a random linear f_0 trajectory and each segment was compressed or elongated by a random amount, using WORLD [Morise et al., 2016].

Revcorr & individual

perception

L'amie/La mie experiment

L'amie/La mie experiment [Osses et al., in prep.]

segment edge (s)

) segmentation

{1 ("l'amie") 0 ("la mie") $r_i =$

participant's

response

Revcorr & individual perception

Léo Varnet

Introduction

honetic cues

a/Ada experiment

Segmentation cues

L'amie/La mie experiment

L'amie/La mie experiment [Osses et al., in prep.]

We obtain two kernels (f0 kernel and time kernel), indicating which aspects of the prosody are used as segmentation cues.

Revcorr & individual perception

Léo Varnet

L'amie/La mie experiment

Revcorr & individual perception

Léo Varnet

Introduction

Phonetic cues

ba/Ada experiment

Segmentation cues

L'amie/La mie experiment

Conclusions

• Considerable variability at the group level (N=15)

・ロ · ・ () · ・ ミ · ・ ミ · ・ ミ · り へ () · 11/13

- Considerable variability at the group level (N=15)
- Nevertheless, a clear prosodic pattern emerges

Revcorr & individual perception

Léo Varnet

Introduction

Phonetic cues

ba/Ada experiment

Segmentation cues

L'amie/La mie experiment

Conclusions

- Considerable variability at the group level (N=15)
- Nevertheless, a clear prosodic pattern emerges
- Two dyslexic participants seem to use a different listening strategy for segmentation

Revcorr & individual perception

Léo Varnet

Introduction

Phonetic cues

a/Ada experiment

Segmentation cues

L'amie/La mie experiment

Conclusions

<□ > < □ > < □ > < Ξ > < Ξ > Ξ · ク Q · 11/13

• The **auditory revcorr approach** can reveal listening strategies and acoustic cues in psychoacoustic tasks (e.g., pitch perception) and psycholinguistic tasks (e.g., phoneme discrimination, segmentation).

Code available on GitHub as an open-source MATLAB toolbox with documentation and turnkey experiments [Osses & Varnet, 2021]: https://github.com/aosses-tue/fastACI

Revcorr & individual perception

Léo Varnet

Introduction

Phonetic cues Aba/Ada experiment Segmentation cues L'amie/La mie experimen

- The **auditory revcorr approach** can reveal listening strategies and acoustic cues in psychoacoustic tasks (e.g., pitch perception) and psycholinguistic tasks (e.g., phoneme discrimination, segmentation).
- It can also produce reliable results at the individual level, making it possible to explore **individual listening strategies**.
- Heterogeneity of individual strategies for phoneme discrimination in a normal-hearing group. Possible difference between the strategies of dyslexic and control participants in a segmentation task.

Code available on GitHub as an open-source MATLAB toolbox with documentation and turnkey experiments [Osses & Varnet, 2021]: https://github.com/aosses-tue/fastACI

Revcorr & individual perception

Léo Varnet

Introduction

Phonetic cues Aba/Ada experiment Segmentation cues L'amie/La mie experiment

Thanks for your attention! And thanks to:

Alejandro Osses, Fanny Meunier, Étienne Gaudrain, Elsa Spinelli

Christian Lorenzi, Michel Hoen, Ken Knoblauch, Emmanuel Ponsot

Revcorr & individual perception

Léo Varnet

Introduction

Phonetic cues Aba/Ada experiment

Segmentation cues L'amie/La mie experiment

Conclusions